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1 Introduction

Contests where contestants compete for a fixed number of prizes using a fixed bundle
of resources are ubiquitous. Many of these contests have a “use-it-or-lose-it” character,
i.e., the resources which could be applied to win the contest, if not applied, are either
lost or have very little residual value. To win a prize, contestants are willing to devote
all their resources into competition and they have to fight with the resources they have.
Thus, resources represent a contestant’s capacity. Higher capacity gives a contestant an
advantage in competition but does not guarantee victory, since contestants with lower
capacity can adopt risky strategies that make victory possible. History offers many
examples. For instance, in the Battle of the Granicus, Alexander the Great, with a force
of at most ten thousand Macedonians, defeated a Persian army of at least one hundred
thousand through an uphill, frontal, cross-river cavalry charge. The Persians, rightly
believing that such a charge was extremely risky, even foolhardy, made no preparations
to defend against it, and thus were surprised by the Macedonian attack and utterly routed
(Siculus (1718)).

Strategic risk taking can take various forms.1 A portfolio manager, aiming to be
a top 10 manager, changes the return distribution by changing the portfolio composi-
tion. A research unit, competing against other research units in the speed of innovation,
varies the probability distribution of discovery dates by varying the riskiness of the re-
search process. A politician, aiming to win an election, considers how to deploy a fixed
campaign war chest over alternative advertising strategies. A student, reviewing for an
exam, decides how to allocate his limited time and attention into different topics.

In these settings, it is natural to represent risk-taking strategies as the choices of
probability distributions over realized performance and capacities as upper bounds on
the expectations of these distributions. Winning a prize depends only on the rank of a
contestant’s performance relative to the performance of his competitors. This approach
has been widely adopted in the literature to model strategic risk taking in rank-order
contests under various contexts: mutual fund tournaments (Taylor (2003), Chen, Hugh-
son, and Stoughton (2012)), R&D competition (Bhattacharya and Mookherjee (1986)
and Klette and de Meza (1986)), electoral campaigns (Myerson (1993), Lizzeri (1999),
Lizzeri and Persico (2001), and Sahuguet and Persico (2006)), sales contests (Gaba and
Kalra (1999)), and promotion contests (Hvide (2002), Hvide and Kristiansen (2003),
Goel and Thakor (2008), Gilpatric (2009), and Han, Hirshleifer, and Persons (2009)).

1The focus of this paper is on strategic risk taking, that is, manipulable risks. This approach contrasts
with the contest models featuring exogenous uncertainties produced by non-manipulable additive noises
(Lazear and Rosen (1981)) or pre-specified contest success functions (Tullock (1980)). See Konrad
(2007) and Van Long (2013) for a brief review of the exogenous-uncertainty contest models.
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While this literature has yielded interesting results, the models considered often reduce
risk choice to variance choice by assuming that contestant performance distributions
are symmetric.2 Under this assumption, papers in this literature reach one common
conclusion: if risk taking is costless, the optimal risk level is always a corner solution,
either the safest or the riskiest feasible strategy.

Academics and practitioners measure risk by variance, and the insights from Du-
bins and Savage (1965) on optimal gambling strategies in games with unfair odds also
suggest that variance is the key parameter for risk taking. However, we show, in this
paper, that restricting attention to variance is not without loss of generality. Contests
are fundamentally different from casino gambles. In contrast to casino gambles, for a
contestant in a rank-order contest, there is no extra gain from winning big as opposed
to merely winning; there is no extra loss from losing big as opposed to merely losing.
Given the existence of a capacity constraint, an asymmetric win-small/lose-big strategy
is optimal against any predictable competitor performance level.3 Because symmetric
distribution models force desired tail risk on one side of the distribution to be accom-
panied by undesired tail risk on the other side, they force contestants with skewness
preference to exhibit variance preference.4

In this paper, we relax the symmetry assumption. The only restrictions we impose
on the performance distributions are that realized performance is nonnegative and ex-
pected performance never exceeds capacity. Our model is also flexible along a number
of other dimensions: the number of contestants, the number of prizes, and, when infor-
mation is incomplete, the variance of contestants’ capacities.

We start the analysis in Section 2 by investigating the simplest contest in which two
equally matched contestants compete for one prize. We show that, if one contestant
plays a symmetric strictly unimodal distribution, the other can always obtain a proba-
bility of winning strictly greater than one half by adopting a win-small/lose-big strategy.
Since a contestant’s best reply will never produce a winning probability less than one
half, the win-small/lose-big strategy prevents strictly unimodal distributions from ever
being best replies in the two-contestant case and leads to an equilibrium in which both
contestants submit uniformly distributed performance levels.

However, when more than two contestants compete for the prize, uniformly dis-
tributed performance levels would generate a probability of winning function that was

2The Colonel-Blotto electoral campaign models introduced by Myerson (1993) are an exception.
3Kamenica and Gentzkow (2011) show that a strategy analogous to win-small/lose-big strategies

in our paper is optimal in a model of rational Bayesian persuasion where the sender maximizes the
probability that the receiver’s posterior probability belief exceeds a fixed threshold. The optimal signal
produces posterior beliefs in the receiver that either meet the threshold or are very low.

4Dijk, Holmén, and Kirchler (2014) show experimentally that contestants have skewness preference.
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unimodal which again would be bested by a win-small/lose-big strategy.5 To prevent
this from occurring, the probability weight placed on high performance levels must
decrease, i.e., the performance distribution must become right skewed. This result
suggests, and our model verifies, that, typically, equilibrium distributions are highly
skewed.6 Contestants do aim for dispersion locally in the sense that their equilibrium
distributions are always absolutely continuous, but they do not aim to maximize vari-
ance. Thus, in contrast to the corner-solution result found in the literature, the equilib-
rium level of risk taking is always interior.

The analysis for the multi-contestant/multi-prize case in a symmetric, complete in-
formation setting is carried out in Section 3. In this setting, the equilibrium is unique.
Every contestant plays a Complementary Beta distribution (Jones (2002)) with one
shape parameter being the number of losers and the other being the number of winners
(prizes). Contestants’ skewness preferences have an interesting relation to the contest
structure. When the contest is selective, i.e., less than one half of contestants win a
prize, equilibrium performance distributions are positively skewed. When the contest is
inclusive, i.e., more than one half of contestants win a prize, equilibrium distributions
are negatively skewed. Equilibrium distributions have zero skew only when exactly
one half of contestants win, in which case equilibrium distributions are symmetric and
weakly U-shaped. Equilibrium distributions are never strictly unimodal, and, except in
the one-winner/one-loser case, never even weakly unimodal. Increasing contest selec-
tivity induces contestants to increase both performance variance and skewness.

Section 4 extends the analysis to contests with incomplete information. Contes-
tants are either strong, with higher capacity, or weak, with lower capacity, and capacity
is private information. When strong contestants have significantly larger capacity, the
equilibrium is unique. Weak contestants adopt concession strategies that result in prizes
only when the realized number of strong contestants is less than the number of prizes.
In this case, contestant behavior is not consistent with the risk-taking-and-ruin intu-
ition — that agents facing a high probability of loss prefer high-variance strategies.7 In
fact, weak contestants’ performance distributions may exhibit significantly less variance
than those of strong contestants. When strong contestants’ capacity is only marginally
higher, weak contestants adopt strategies that produce a positive probability of winning

5In equilibrium, the probability of winning function is a cumulative distribution function. Thus, when
we say “unimodal probability of winning function,” we mean that the probability of winning function
satisfies the conditions for unimodality imposed on a probability distribution.

6Skewness preference has been derived in an number of contexts other than contests. See, for exam-
ple, Tsiang (1972), Brunnermeier, Gollier, and Parker (2007), Barberis and Huang (2008), and Bordalo,
Gennaioli, and Shleifer (2012).

7For a discussion of risk taking and the probability of ruin, see, for example, Pyle and Turnovsky
(1970) and Rose-Ackerman (1991).
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even when the realized number of strong contestants exceeds the number of prizes. In
this case, there are many equilibria. However, all equilibria produce the same type-
conditioned probability of winning.

Section 5 investigates the effects of three commonly used contest modifications—
scoring caps, penalty triggers, and localizing contests—on selection efficiency, the ef-
ficiency of a contest mechanism in allocating prizes to the strongest contestants.8 We
show that penalizing contestants whose performance fails to reach a threshold weakly
improves selection efficiency while dividing a grand contest into smaller local contests
weakly harms selection efficiency. Interestingly, capping contestants’ performance lev-
els has no impact on selection efficiency (under a weak condition), but it induces con-
testants to play safer strategies.

Section 6 applies the model to mutual fund tournaments, R&D contests, and stochas-
tic contests. Because, in practice, only a small number of mutual funds are identified as
“stars” relative to the population of funds and only stars receive significantly positive
rank-based capital inflows, mutual fund tournaments are selective. Thus, our theory
predicts that the unsystematic returns of mutual funds have positive skewness, which is
consistent with the empirical evidence in Wagner and Winter (2013).

Our R&D contest model follows Klette and de Meza (1986) but relaxes their sym-
metry assumption. In their model and other R&D competition models (Dasgupta and
Stiglitz (1980) and Bhattacharya and Mookherjee (1986)), the winner’s prize is not fixed
but, rather, strictly increasing in winner performance. Thus, winning small and winning
big are no longer payoff equivalent. However, rewards remain rank dependent. Be-
cause of rank dependency, winning creates a jump in contestant payoff. For this reason,
contestants still have win-small/lose-big preferences. We show that these preferences,
through strategic interaction, concavify the performance-payoff relation. Thus, we find,
in contrast to much of the literature (Bhattacharya and Mookherjee (1986) and Klette
and de Meza (1986)), not only that R&D contests do not lead to excessive risk taking
but also that, as argued by Dasgupta and Stiglitz (1980), the R&D contest structure
actually biases contestants against risk taking.

In the last part of Section 6, we apply our model to “stochastic contests” in which
each contestant decides when to stop a privately observed stochastic process and con-
testants are ranked according to their stopped values (Seel and Strack (2013)). Inter-

8The effects of these contest modifications on strategies and outcomes have been analyzed in the
context of all-pay contests, in which contestants make effort choices rather than risk choices and the
contest designer’s goal is effort relevant but not selection relevant. See, for example, Che and Gale
(1998) and Gavious, Moldovanu, and Sela (2002) for scoring caps, Gilpatric (2009), Akerlof and Holden
(2012), and Moldovanu, Sela, and Shi (2012) for penalty triggers, and Moldovanu and Sela (2006) and
Fu and Lu (2009) for localizing contests.
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estingly, when the stochastic process is a geometric Brownian motion or a Brownian
motion absorbed at zero, stochastic contests and our capacity-constrained contests are
strategically equivalent, with a contestant’s capacity in stochastic contests represented
by the initial value of his stochastic process. This equivalence is founded on Skorokhod
embedding theorems (Skorokhod (1965)), which determine the conditions under which
a probability distribution can be induced by stopping a stochastic process.9 We show
that an increase in contest selectivity or contest size induces contestants to postpone the
stopping of the stochastic process.

Section 7 concludes by summarizing the main findings of the paper and providing a
brief discussion of the possible extensions of the model. All the proofs are relegated to
the Appendix. The online Supplementary material contains the proof of the equilibrium
uniqueness in the certain-capacity contest game studied in Section 3.

1.1 Related literature

Our paper makes several contributions to the contest literature. First, our paper con-
tributes to the contest literature on risk-taking strategies. As mentioned earlier, this
literature restricts contestants’ distributional choices either to symmetric distributions
(Klette and de Meza (1986), Hvide (2002), Gaba, Tsetlin, and Winkler (2004), Goel
and Thakor (2008), Kräkel (2008), and Gilpatric (2009)) or to mixtures of two exoge-
nously specified distributions (Hvide and Kristiansen (2003), Taylor (2003), Kräkel and
Sliwka (2004) and Nieken and Sliwka (2010)). Our results show that these restrictions
have profound effects. For example, Gaba, Tsetlin, and Winkler (2004) show that,
when contestants can choose any symmetric distribution about the same mean, contes-
tants play safe when the contest is inclusive while take extreme risk when the contest is
selective. In our framework, which imposes no restrictions on the shape of the distribu-
tions, neither the safest nor the riskiest strategy is played in equilibrium, and symmetric
unimodal distributions are the antithesis of the equilibrium distributional choices.

Second, our paper contributes to the literature on contests where contestants have
win-small/lose-big incentives. One class of contests that induce such incentives is the
all-pay contests in which contestants compete for fixed prizes by submitting costly and
non-refundable bids (Varian (1980), Ellingsen (1991), Baye, Kovenock, and de Vries
(1993), Che and Gale (1998), Gavious, Moldovanu, and Sela (2002), and Siegel (2009)).
Because of bidding costs, conditional on winning or losing, a contestant’s payoff de-
creases with his bid, and the win-small/lose-big incentive is hence induced by cost-
saving concerns. In our model, the win-small/lose-big incentive is generated by a differ-

9See Oblój (2004) for a survey of Skorokhod embedding theorems.
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ent but analogous mechanism. Performance levels determine the probability of winning
in our model and thus are analogous to bids in an all-pay contest. In contrast to bids
in an all-pay contest, these “performance-level bids” have no direct cost to contestants
and only directly affect contestants through their effect on the probability of winning.
However, because such bids use up capacity and capacity is constrained, the capacity
constraint indirectly imposes a shadow price. This shadow price ensures that, as in an
all-pay contest, conditional on winning the contest, it is optimal to win by the smallest
possible margin and, conditional on losing, to lose by the largest possible margin.

Although the win-small/lose-big incentive leads to randomized bids in both all-pay
contests and our model, the different driving forces behind this incentive affect con-
testants’ randomization strategies differently in at least two respects. First, in all-pay
contests, the supports of the bid distributions are always bounded above by contes-
tants’ prize valuations. Thus, changes in contest structure have little impact on the
supports of the bid distributions. In contrast, in our model, although the “win-small”
incentive induces contestants to bid on a bounded support, since maximal rational bids
are not capped by prize valuations, the upper bounds often vary when contest structure
changes. This difference significantly affects comparative statics. For example, Hillman
and Samet (1987) find that, in an all-pay contest, increasing the number of contestants
induces each contestant to behave less aggressively in terms of first-order stochastic
dominance.10 In contrast, in our capacity-constrained model, we show that increasing
the number of contestants induces each contestant to behave more aggressively, i.e.,
choose riskier distributions in terms of second-order stochastic dominance. Second,
even in symmetric, complete information all-pay contest models, some contestants may
not be active bidders. This can lead to a continuum of asymmetric equilibria in which
some contestants are inactive (Baye, Kovenock, and de Vries (1996)). In contrast, in
our model, contestants are always active. Moreover, in our model, when information is
complete and contestants are symmetric, the equilibrium is unique and symmetric.

Third, our paper contributes to the literature on selection efficiency of contests.
Some works take a statistical approach with contestants’ performance distributions ex-
ogenously specified (Meyer (1991), Ryvkin and Ortmann (2008) and Ryvkin (2010))
while others take into account contestants’ effort-bidding strategies (Clark and Riis
(2001) and Kawamura and Moreno de Barreda (2014)). The effect of risk taking on
selection properties of contests is analyzed in Hvide and Kristiansen (2003) under the
assumption that contestants can only choose between two fixed strategies. They find

10This result is not explicitly stated in Hillman and Samet (1987). However, simple calculation shows
that it is implied by their Proposition 1. Similarly, the results in Clark and Riis (1998) imply the same
conclusion in a multi-prize all-pay setting.
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that increasing the number of contestants or contestant quality can sometimes lower
winner quality. In contrast, in our more flexible setting, winner quality is always weakly
increasing in both the number of contestants and contestant quality.

Finally, our paper contributes to the literature on stochastic contests and Colonel
Blotto games. Seel and Strack (2013) develop the stochastic contest framework, in
which each contestant privately observes a stochastic process and chooses a stopping
time and is ranked by the resulting stopped value of the process. Capacity is represented
by the initial value of his stochastic process. Seel and Strack consider the case where
several contestants with the same capacity compete for one prize and the stochastic
process is a Brownian motion absorbed at zero.11 We extend their analysis to the multi-
prize case with both complete and incomplete information on capacity and we also
allow the process to be a geometric Brownian motion. Moreover, we also examine the
effect of a change in contest structure on stopping strategies. As we will discuss in
detail in Section 7, because our analysis of the capacity-certainty version of the model
provides a closed-form solution for an arbitrary number of prizes and contestants, for
a relaxed version of the Colonel Blotto game, our paper also contributes to solving the
technically challenging problems related to characterizing the solutions to this game.

2 Besting a fixed distribution

2.1 Framework

Consider the problem of a contestant picking a distribution function F for a nonneg-
ative random variable, X , so as to maximize X’s probability of exceeding the realized
value of another nonnegative random variable, Y , whose distribution P is exogenously
determined and statistically independent of X . We call the distribution that the con-
testant is attempting to surpass the “fixed distribution” and the distribution selected by
the contestant the “challenge distribution.” To abstract from the problem of ties, in this
section, we assume that the fixed distribution has no point mass and is thus continu-
ous. No continuity restriction is imposed on the challenge variable. Let F(·) and P(·)
denote, respectively, the cumulative distribution functions (CDFs) of the challenge and
the fixed random variables, and let dF and dP denote the measures associated with the
random variables. We can express the probability that the challenge variable wins as

P{X ≥ Y}=
∫

∞

0
P{Y ≤ x}dF(x) =

∫
∞

0
P(x)dF(x). (1)

11Seel and Strack (2013) also consider the case in which contestants have different capacities, but this
is done only for the two-contestant case.
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The contestant’s problem is to maximize this probability. It is more convenient to
express this problem as one of choosing probability measures over the nonnegative real
line rather than random variables on a measure space. Thus, we can formulate the con-
testant’s problem as one of choosing a challenge measure dF to use against the fixed
measure dP. The challenge measure has to satisfy two constraints: (a) it has to be a
probability measure and (b) its expectation is constrained to be weakly below some
value, say µ > 0. We call the latter the capacity constraint. We assume that P(µ)< 1.
Otherwise, the problem is trivial, since P(µ) = 1 implies that simply choosing perfor-
mance µ will ensure winning with certainty. Since reducing the total mass of the chal-
lenge measure below 1 will never strictly increase the contestant’s payoff, the solution
to this problem coincides with the solution to the following relaxed problem:

max
dF≥0

∫
∞

0
P(x)dF(x) s.t.

∫
∞

0
dF(x)≤ 1 &

∫
∞

0
xdF(x)≤ µ. (2)

Since P is a CDF, P is nondecreasing, bounded, and upper semicontinuous. Thus,
given that the feasible set of measures is compact in the weak topology, an optimal
solution to problem (2) exists. Since problem (2) is a linear program, feasible and
bounded, by duality theory, strong duality holds.12 Therefore, the optimal solution to
(2) must also be a maximizer of the following Lagrangian:

L (dF,α,β ) =
∫

∞

0
P(x)dF(x)−α

(∫
∞

0
dF(x)−1

)
−β

(∫
∞

0
xdF(x)−µ

)
, (3)

where α and β are nonnegative optimal dual variables that solve the following dual
problem:

min
α,β≥0

sup
dF≥0

L (dF,α,β ). (4)

Rewrite equation (3) as

L (dF,α,β ) =
∫

∞

0
[P(x)− (α +β x)]dF(x)+α +β µ. (5)

Equation (5) implies that the optimal dual variables that solve (4) must satisfy

P(x)− (α +β x)≤ 0 ∀ x≥ 0, (6)

since otherwise supdF≥0 L (dF,α,β ) goes to positive infinity. Thus, α +β x is an upper
bound for P(x).

12For a discussion of duality theory, see Boyd and Vandenberghe (2004).
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When condition (6) is satisfied, the value of the dual problem (4) equals

α +β µ, (7)

which is strictly increasing in both α and β . Thus, the nonnegative optimal dual vari-
ables must minimize α + β µ subject to condition (6). Hence, given that P is upper
semicontinuous, condition (6) must be binding for some x ≥ 0, i.e, there exists some
point(s) x′ ≥ 0 such that P(x′)− (α +β x′) = 0.

Thus, α + β x is an upper support line for P. Placing any probability weight on
points at which P(x)− (α +β x) < 0 lowers the Lagrangian. Thus, the optimal chal-
lenge distribution will place no weight on such points. Therefore, the optimal challenge
measure is always concentrated on points at which the upper support line, α + β x,
meets the distribution function, P. Thus, the optimal challenge measure, dF , and the
associated optimal dual variables, α and β , must satisfy the following conditions:

P(x)≤ α +β x ∀ x≥ 0;

dF{x≥ 0 : P(x)< α +β x}= 0.
(8)

By strong duality, the primal problem (2) must have its optimal value equal to that
of the dual problem (4), so the contestant’s optimal winning probability is given by
equation (7) with α and β being optimal dual variables.

Remark 1. Since we have assumed that P(µ) < 1, given that P is a CDF and, hence,

there exists xo > µ such that P(xo) > P(µ), it is clear that the capacity constraint

must be binding at the solution of problem (2). In other words, the optimal challenge

distribution must have its mean equal to µ . By condition (8), this requires the upper

support line, α +β x, to meet P on some point weakly below µ and also on some point

weakly above µ .

2.2 Besting specific distributions

The optimal challenge measure depends on the shape of the fixed distribution, P. If
P is strictly concave over its support, then at each point on the graph of P over its
support, there is an upper support line that is strictly above P at all other points. Thus,
by Remark 1, the optimal challenge distribution places all weight on the point µ . If P is
strictly convex on its support, its support must be bounded for P to be a CDF. Assume
that the support of P is [0, ζ ]. Recall that, to make the discussion nontrivial, we have
assumed P(µ) < 1, which is equivalent to assuming ζ > µ here. By Remark 1, it is
clear that the only upper support line associated with the optimal challenge measure is

9



the one that connects the value of P at x = 0 to its value at its upper endpoint, x = ζ .
Thus, the optimal challenge measure only places weight on 0 and ζ , the lower and upper
endpoints of the support of P.

Suppose that the contestant’s capacity, µ , equals the mean of P. In this case, we can
interpret our problem as one picking a challenge distribution, F , with the best chance
of besting a fixed distribution, P, with the same mean. One possible solution is to set
F = P which would yield a probability of winning equal to 1/2. Is it possible to do
better, i.e., can a contestant “best” P by garnering a probability of winning exceeding
1/2?

First, consider the case where P is strictly concave. Consider the optimal challenge
distribution against a given concave fixed distribution detailed above. This challenge
distribution places all the probability weight on µ and, hence, yields a probability of
winning equal to P(µ). Since µ is also the mean of the random variable, Y , whose
distribution, P, is strictly concave, by Jensen’s inequality, P(µ)>E[P(Y )] = 1/2. Thus,
“playing safe” always bests a strictly concave CDF with the same mean. This result is
illustrated in Panel A of Figure 1.

Now consider the case where P is strictly convex with support [0, ζ ]. As shown
earlier, the optimal challenge distribution against P involves placing all the probability
mass on the points 0 and ζ . For the challenge distribution to have expectation µ , the
weight on ζ , which also equals the probability of the challenge distribution winning,
must equal µ/ζ . Since P is strictly convex and supported by [0, ζ ], P first-order stochas-
tically dominates the uniform distribution over [0, ζ ]. Hence, the mean of P exceeds the
mean of the uniform distribution, i.e., µ > ζ/2. Thus, the probability of winning using
the optimal challenge distribution, µ/ζ , exceeds 1/2. Therefore, a strictly convex CDF
can always be bested by “taking a gamble,” i.e., choosing a distribution with the same
mean that places all the weight on the two endpoints of the support of the convex CDF.
This result is illustrated in Panel B of Figure 1.

However, a strictly convex CDF implies an increasing probability density function
(PDF). This is not a common property for “textbook” distributions. Symmetric uni-
modal distribution functions are far more commonly encountered in the economics and
statistics literature. Is it possible to best these distributions? In fact, the optimal chal-
lenge distribution against such distributions is a “win-small/lose-big” distribution. Sup-
pose that P is a symmetric strictly unimodal distribution, with the lower bound of its
support being 0. Define x∗ as the maximizer of P(x)/x over the support of P. Note that
x∗ exists, is unique, and exceeds the mode of the distribution.13 Since the distribution is

13Since P is convex below the mode, limx↓0 P(x)/x exists and is finite. Extending the definition of
P(x)/x when x = 0 by using this limit, we see that P(x)/x is a continuous function defined on a compact
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Figure 1: Besting concave and convex CDFs. The graphs illustrate optimal challenge
distributions played against fixed distributions whose mean equals the mean of the chal-
lenge distribution. The upper support lines are denoted by dashed lines. The fixed dis-
tributions are denoted by thick grey lines. The expectations and medians of the fixed
distributions are denoted by µ and m, respectively.

symmetric, x∗ exceeds the mean of the distribution as well. Consider the line connect-
ing the origin to the point (x∗,P(x∗)). Note that this line is the only upper support line
for P that satisfies the condition in Remark 1. Consider a distribution that places weight
of µ/x∗ on x∗ and weight of (1−µ/x∗) on 0. Then the expectation of this distribution
is µ and the probability of winning is

µ

x∗
P(x∗). (9)

Note that, by the definition of x∗, over the support of P,

P(x∗)
x∗

>
P(x)

x
∀ x 6= x∗, x 6= 0.

Thus, over the support of P,

P(x∗)x > x∗P(x) ∀ x 6= x∗, x 6= 0.

support and, hence, a maximizer must exist. Unimodality implies that P(x) is convex below the mode
and, hence, P(x)/x is increasing below the mode. Thus, any maximizer of P(x)/x must be greater than
the mode of P. Unimodality also implies that P(x) is strictly concave (on its support) above its mode.
Thus, P(x)/x is strictly quasi-concave. Strict quasi-concavity implies that the maximizer of P(x)/x is
unique.
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Integrating both sides over P yields

P(x∗)µ = P(x∗)
∫

xdP(x)> x∗
∫

P(x)dP(x) = x∗
1
2
. (10)

Combining (9) and (10) shows that a symmetric strictly unimodal fixed distribution can
always be bested by a win-small/lose-big challenge distribution. The construction of the
optimal challenge distribution is illustrated by Figure 2. In fact, the win-small/lose-big
distribution bests asymmetric unimodal distributions whenever the fixed distribution’s
mean, µ , is less than x∗. A sufficient condition for µ < x∗ is for the mean-median-mode
inequality to hold. If the opposite inequality holds, the mode-median-mean inequality,
then 1/2 = P(median)< P(µ) and thus a play-safe distribution bests the unimodal dis-
tribution. The “typical” case for unimodal distributions is for either the mean-median-
mode or the mode-median-mean inequality to hold, and there are a number of results in
the statistical literature identifying sufficient conditions for one of these inequalities to
hold.14 Thus, typically, a unimodal distribution can be bested by a simple distribution,
either a win-small/lose-big or a play-safe distribution.

These specific results can be extended to find challenge distributions that best many
other classes of fixed distributions; however, it is impossible to enumerate all of them.
But we can answer one more general question. Is there a distribution that cannot be
bested? The best reply to such a distribution would have to yield a probability of win-
ning equal to 1/2. One such distribution is the uniform distribution over [0, 2µ]. To see
this, note that the probability of winning against a uniform distribution with mean µ

when the challenge performance equals x is P(x) = min[x/(2µ), 1]. Clearly, an optimal
challenge distribution must not place any weight on the points outside the support of P,
and, for any challenge distribution, F , over the support of P with mean µ ,∫

P(x)dF(x) =
∫ x

2µ
dF(x) =

1
2µ

∫
xdF(x) =

1
2
.

The following proposition shows that the uniform distribution is in fact the only distri-
bution that cannot be bested.

Proposition 1. If a distribution P has the property that the maximum probability of

winning against P for all challenge distributions with the same mean equals 1/2, then

P is a uniform distribution.

As we have shown how to best concave and convex CDFs, Proposition 1 is not
difficult to understand. If a distribution P exhibits local convexity or concavity some-
where on its support, it will be bested by a challenge distribution that bests P locally

14See Sato (1997) for further discussion of the mode-median-mean inequality.
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Figure 2: Panel A illustrates the PDF, p, for a symmetric unimodal distribution — the
Beta distribution with shape parameters (2,2). Panel B illustrates a distribution which
bests the Beta distribution: The CDF, P, of the Beta distribution is denoted by the grey
line and the upper support line, U , for the CDF by the dashed line. The distribution
which bests this Beta distribution places all its weight on two points, x = 0 and x =
x∗ = 3/4, where the support line meets the distribution function. The probabilities of
these points are set so that the expected value of the challenge distribution equals the
expected value of the Beta distribution. Thus, the probability of x = 0 equals 1/3 and the
probability of x = x∗ = 3/4 equals 2/3. The probability that the challenge distribution
will win is given by the probability that x = x∗ = 3/4 times the probability of winning
when x = x∗, P(x∗) = 27/32, which is (2/3)(27/32) = 9/16 > 1/2.

and mimics P everywhere else. Thus, to avoid being bested, P has to be linear over
its support. Proposition 1 implies that, in a contest game where two equally matched
contestants compete for one prize, there exists a unique equilibrium in which both con-
testants choose a uniform distribution, since playing a uniform distribution is the only
way of preventing a contestant from being bested by his strategic competitor.15

3 Contests with no capacity uncertainty

In Section 2, we started with a decision problem—how to best a fixed distribution—
and we ended with an equilibrium solution for the simple contest with two strategic
contestants and one prize. In this section, we examine a more general contest in which
n strategic contestants compete for m identical prizes, where 1 ≤ m ≤ n− 1. A con-
testant can win at most one prize. The model consists of two stages: in stage one,

15Strictly speaking, this implication, for the time being, is based on the assumption that P is continuous.
However, we show in the next section that P must be continuous if it is chosen by a strategic competitor.
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each contestant simultaneously and effortlessly chooses a probability distribution for
his random performance; in stage two, each contestant’s realized performance is inde-
pendently drawn from the distribution he chose and the m prizes are given to the m

contestants with the highest realized performances. Ties are broken randomly.
The two conditions imposed on admissible distributional choices of a strategic con-

testant are the same as those in Section 2: (i) the support of the distribution must be on
the nonnegative real line, and (ii) the expected performance cannot exceed the contes-
tant’s capacity. In this section, we assume that all the contestants have the same capacity
equal to µ > 0. We relax this assumption in the next section.

We focus on symmetric Nash equilibria throughout the paper, in which contestants
with the same capacity play the same distribution. In this section, this means that all the
contestants play the same distribution as they have the same capacity. While we restrict
attention to symmetric equilibria, we show in the Supplementary material that there are
no asymmetric equilibria when all the contestants have the same capacity. Thus, the
symmetric equilibrium derived later on in this section is in fact the unique equilibrium.

3.1 Probability of winning

Since the contestants’ choice sets are convex, we do not need to consider mixed strate-
gies. Contestant i’s performance is a random variable, denoted by Xi, and his realized
performance is xi, drawn from the CDF, Fi(·), he chose. Since we concentrate on sym-
metric equilibria and all the contestants are homogeneous, for notational convenience,
we suppress the index of a contestant’s identity. We denote a contestant’s probability of
winning when his realized performance equals x by P(x), where P is produced by his
competitors’ strategies.

Note that, in a symmetric equilibrium, no contestant’s performance distribution
places positive mass on a single performance level. This follows from symmetry: if
one contestant placed positive weight on a given point, then all contestants would place
positive weight on this point. If all contestants placed weight on a given point, say xo,
then, with positive probability, all contestants would have performance equal to xo and,
hence, would tie at xo. In this case, a performance level greater than xo by an infinitesi-
mal amount would break the tie and, hence, would generate, with positive probability, a
non-infinitesimal upward jump in a contestant’s payoff. This contradicts the optimality
of performance distributions placing mass on xo. This “no-mass” result implies that the
probability of winning function, P, is continuous and intersects the origin.

Lemma 1. In a symmetric equilibrium, the probability of winning function, P, is con-

tinuous and P(0) = 0.
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Lemma 1 implies that P satisfies the continuity property of the “fixed distribution”
in Section 2. In essence, P is the CDF that a contestant plays against. Since no one can
do better than others in a symmetric equilibrium, a contestant’s best reply must not best
P. As suggested by Proposition 1, P then has to be a uniform distribution. The next
proposition confirms this result and completely characterizes P.

Proposition 2. In a symmetric equilibrium, the probability of winning function, P, is

given by

P(x) =

 m
nµ

x if 0≤ x≤ nµ

m

1 if x > nµ

m

. (11)

3.2 Individual contestant strategies

Based on Proposition 2, to solve for the equilibrium strategy, F , we only need to deter-
mine the relation between P and F .

Consider a contestant with a realized performance level, x. He has n−1 competitors,
each choosing an independent and identical distribution, F . Since no one places point
mass, there is no chance of a tie. His probability of winning given performance x,
P(x), equals the probability that his realized performance x exceeds the mth highest
performance of the remaining n−1 contestants. Since the mth highest performance out
of n−1 is the (n−m)th lowest performance,

P(x) = P
{

Xn−m:n−1 ≤ x
}
,

where Xn−m:n−1 represents the (n−m)th order statistic for distribution F . Thus, P

equals the distribution of this order statistic, given by (see Lemma 1.3.1 in Reiss (1980))

P(x) = Fn−m:n−1(x) =
n−1

∑
i=n−m

(
n−1

i

)
F(x)i (1−F(x))(n−1)−i. (12)

Inserting (12) into (11) gives the equilibrium performance distribution.

Proposition 3. In a symmetric equilibrium, the performance distribution, F, satisfies

the following equation on its support [0, nµ/m]:

n−1

∑
i=n−m

(
n−1

i

)
F(x)i (1−F(x))(n−1)−i =

m
nµ

x.

By Proposition 3, when n = 2 and m = 1, F is a uniform distribution, confirming
our finding in Proposition 1. When n > 2 and m = 1, F is a power-function distribution.
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In general, F is a stretched Complementary Beta distribution, which coincides with
some other types of distributions in some special cases (Jones (2002)). It is obtained by
swapping the roles of the CDF and the quantile function of the Beta distribution. We
provide its definition below.16

Definition 1. If U is a random variable on the support [0, 1] whose CDF, FU , satisfies

a+b−1

∑
j=a

(
a+b−1

j

)
FU(u) j(1−FU(u))a+b−1− j = u,

then U has a Complementary Beta distribution with shape parameters being a and b,

denoted by U ∼ CB(a,b).

The next result follows from Proposition 3 and Definition 1.

Proposition 4. In a symmetric equilibrium, contestant random performance, X, satis-

fies m
nµ

X ∼ CB(n−m,m).

The two shape parameters of the equilibrium distribution, n−m and m, coincide
with the number of losers and the number of winners, respectively. Jones (2002) shows
that the PDF of the Complementary Beta distribution is U-shaped when the two shape
parameters are strictly greater than 1, i.e., when 1 < m < n− 1 in our case. The equi-
librium distribution is never strictly unimodal and, except in the one-winner/one-loser
case, even never weakly unimodal. The literature on endogenous risk taking in contests
usually assumes unimodality and symmetry of admissible distributions. Under this as-
sumption, the literature finds that, if risk taking is costless, the equilibrium level of risk
taking is always extremal (Klette and de Meza (1986), Hvide (2002), Gaba, Tsetlin,
and Winkler (2004), Goel and Thakor (2008), and Kräkel (2008)). In contrast, our re-
sult suggests that the exogenously specified symmetric unimodal distributions are the
antithesis of the equilibrium distributional choices, and the equilibrium level of risk tak-
ing is never extremal: contestants choose non-atomic performance measures and, in this
sense, their strategies are “locally dispersed,” but, the global dispersion of performance
levels is limited.

3.3 Contest selectivity

Contest selectivity increases when the number of contestants, n, increases or the number
of prizes, m, decreases. Making the contest more selective increases the right skewness

16Jones (2002) defines the Complementary Beta distribution in a more general way where the two
shape parameters characterizing the distribution can be any positive numbers. As we only need to look
at the case where the two shape parameters are positive integers, we use a confined definition.
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of the equilibrium distribution. The intuition for this result is easiest to understand if
we restrict attention to the contest with a fixed number of contestants and we increase
selectivity by decreasing the number of prizes. As the number of prizes falls, for any
fixed distribution selected by the contestants, the probability of a given contestant win-
ning over the high performance level range relative to the low performance level range
increases.17 As shown in Proposition 2, in equilibrium, the marginal incentives must be
the same at all performance levels in the support of the equilibrium distribution. Thus,
the equilibrium distribution function’s slope at the high end must decrease relative to
the low end to compensate, i.e., skewness must increase. This result is illustrated in
Figure 3 and demonstrated in Proposition 5.

x
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Panel A. PDF
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0.75
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F2
F3
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Panel B. CDF

Figure 3: Effects of increasing contest selectivity on the equilibrium distribution. The
figure plots equilibrium distributions for contests with four contestants. Contestant ca-
pacity is normalized to 1. The equilibrium PDF (CDF) when m winners are selected is
denoted by fm (Fm). Increasing selectivity increases the right skewness (or decreases
the left skewness) and the dispersion of the equilibrium distribution.

Using the properties of the Complementary Beta distribution, in Proposition 5, we
characterize the effects of selectivity on performance dispersion and skewness, as mea-
sured, respectively, by the L-scale and the L-skewness of the equilibrium distribution.18

We use L-moments instead of conventional moments for computational convenience.
17This effect of selectivity on the relative likelihood of winning over the high versus low range follows

since the distribution of marginal winning bid in the more selective contest first-order stochastically
dominates that in the less selective contest (Nanda and Shaked (2001)).

18The L-scale is the second L-moment of a distribution. The second L-moment equals half the expected
difference between the highest and lowest of two random draws from the distribution. It is a measure
of dispersion analogous to standard deviation and satisfies the conditions specified in Oja (1981) for
dispersion measures. The L-skewness is the third L-moment ratio, calculated by dividing the third L-
moment by the L-scale. The third L-moment equals one third of the expected difference of the differences
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Proposition 5. i. The L-scale of the equilibrium distribution is

λ2,F =
(n−m)µ

n+1
. (13)

ii. The L-skewness of the equilibrium distribution is

τ3,F =
n−2m
n+2

. (14)

iii. The L-scale and the L-skewness of the equilibrium distribution are both strictly

increasing in n and strictly decreasing in m.

iv. The equilibrium PDF is symmetric about its mean if m/n = 1/2, right skewed if

m/n < 1/2, and left skewed if m/n > 1/2.

Proposition 5 shows that the equilibrium distribution is right skewed when the con-
test is selective, left skewed when the contest is inclusive, and symmetric when exactly
one half of the contestants receive a prize. This result can be contrasted with Gaba,
Tsetlin, and Winkler (2004) who find that, when contestants are restricted to symmet-
ric distributions, each contestant maximizes performance variance when the contest is
selective, minimizes performance variance when the contest is inclusive, and is indiffer-
ent between all levels of variance when one half of them receive a prize. Their result is
driven by the symmetric distribution assumption that forces contestants with skewness
preference to exhibit variance preference.

Proposition 5 also implies that increasing contest selectivity increases the dispersion
of the equilibrium distribution, which suggests that contestants play riskier strategies
when contest selectivity increases. In the next proposition, we confirm this point by
showing that an increase in selectivity induces a simple mean-preserving spread (s-

MPS) of the equilibrium performance distribution in the sense of Diamond and Stiglitz
(1974): for two CDFs, F and G, F is a s-MPS of G if F and G have the same mean
and there exists x′ such that F(x)−G(x)≤ (≥)0 when x ≥ (≤)x′. The s-MPS relation
between more and less selective contests is illustrated by Panel B in Figure 3.

Proposition 6. Increasing contest selectivity, either by increasing the number of contes-

tants or by decreasing the number of prizes, induces a simple mean-preserving spread

of contestant performance.

between the highest draw and the middle draw and the middle draw and the lowest draw of three random
draws from the distribution. The L-skewness is a measure of the asymmetry of a distribution analogous
to conventional skewness measures (see Hosking (1990)) and satisfies the conditions specified in Oja
(1981) for skewness measures.
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In contrast to the result in Gaba, Tsetlin, and Winkler (2004) that increasing se-
lectivity either has no or an extreme effect on the riskiness of contestant performance
when contestants are restricted to symmetric distributions, Proposition 6 implies that
the change in riskiness is incremental in the change in selectivity when the symmetric
distribution restriction is removed.

3.4 Contest size

Contest size increases when n increases in proportion to m. In contrast to increasing
selectivity, increasing contest size does not affect the support of the equilibrium distri-
bution. However, increasing contest size affects the shape of the distribution. Using
simple calculations based on the properties of the Complementary Beta distribution, we
show, in Proposition 7, that increasing contest size increases both the absolute value of
skewness and the dispersion of the equilibrium distribution.

Proposition 7. When n and m increase by the same proportion,

i. the support of the equilibrium distribution and the direction of skewness remain

constant;

ii. both the L-scale and the absolute value of the L-skewness increase;

iii. the performance distribution undergoes a simple mean-preserving spread.

The effects identified in Proposition 7 are depicted in Figure 4. In all the three
cases depicted in Figure 4, one fourth of contestants in the contest win a prize. The
PDFs and CDFs plotted vary by the number of contestants, which varies in multiples of
ten between eight and eight hundred.

Figure 4 illustrates that (a) increasing contest size always increases the dispersion
of the equilibrium performance distribution but (b) the increase in dispersion is quite
modest: increasing dispersion does not change the support of the performance distribu-
tion and even a 10-fold scale increase in contest size has only a modest effect on the
graph. Characterizations (a) and (b) can both be understood by considering the effect
of increasing contest size holding the performance distribution constant and then con-
sidering how the performance distribution must adjust to continue to satisfy the equi-
librium conditions. Given a fixed performance distribution, as contest size increases,
the probability of winning function converges asymptotically at rate 1/

√
n to a Normal

distribution (See Theorem 4.2.3 in Reiss (1980)). The Normal distribution is unimodal.
From the results in Section 2, we know that the best response to a symmetric unimodal
distribution is a win-small/lose-big distribution. Such distributions have two-point sup-
ports. Since two-point support distributions are discontinuous, they cannot be played in
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Figure 4: Effects of increasing contest size on the equilibrium distribution. The figure
plots the equilibrium distributions for three contest sizes; fm:n (Fm:n) represents the
equilibrium PDF (CDF) when m out of n contestants win. In each of the cases graphed,
winner proportion is fixed at 1/4. Contestant capacity is normalized to 1.

equilibrium. Thus, the performance distribution must adjust to counter the emergence
of a unimodal probability of winning function. Unimodality is countered by shifting
weight in the performance distribution toward the endpoints. The required shift is fairly
modest since the rate of asymptotic convergence is fairly slow, O(1/

√
n). This effect is

absent in Gaba, Tsetlin, and Winkler (2004) who find that an increase in contest size has
no effect on risk-taking strategies. Note that Figure 4 seems to indicate convergence to a
limiting distribution as contest size increases without bound. This conjecture is indeed
correct, as the next proposition shows.

Proposition 8. Fixing the proportion of winners at ρ , i.e., m/n = ρ , when n→ ∞, the

equilibrium performance distribution converges weakly to the limiting distribution, F∞,

defined by

F∞(x) =

1−ρ if 0≤ x < µ/ρ

1 if x≥ µ/ρ

. (15)

The limiting distribution, F∞, is Bernoulli, placing all its weight on the extreme
points of the common support for the sequence of equilibrium distribution functions.
The logic behind Proposition 8 is fairly straightforward: holding the proportion of win-
ners constant while increasing the number of contestants makes the performance level
required to win a prize more predictable. To counter this effect, the equilibrium dis-
tribution must become more unpredictable. Since contest size has no effect on the
equilibrium range of performance levels, reduced predictability can only be produced
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by moving probability weight toward the extreme points of the support. In the limit, all
weight is placed on these extreme points.

In contrast to the result in Gaba, Tsetlin, and Winkler (2004) that when contestants
are restricted to symmetric distributions, they play Bernoulli distributions when the
contest is selective, our result shows that, when contestants can choose asymmetric
distributions, they never play Bernoulli distributions but that the Bernoulli distribution is
always the limiting distribution as contest size increases to infinity regardless of whether
the contest is selective or inclusive.

4 Contests with capacity uncertainty

Contests are frequently used for selection, e.g., universities admit students based on the
results of public examinations, firms choose between rival executive candidates based
on on-the-job performance in similar tasks, and investors choose portfolio managers
based on managers’ relative performance. In these cases, the gain from selecting the
contest winner over the loser does not arise per se from performance in the contests.
Rather, winning is a signal of underlying ability or, in our terminology, capacity. Thus,
the efficiency of contest-based selection depends on the strength of the performance–
capacity relation. Since such selection mechanisms are only rational when capacity is
not directly observable, contests in which contestants’ capacities are private informa-
tion are a natural focus of analysis. Moreover, the natural question to pose to such an
analysis is how strong is the link between equilibrium performance and capacity.

To develop this analysis, we introduce capacity uncertainty into the model. We
assume that each contestant has probability θ of being strong (S), with capacity equal
to µS, and probability (1− θ) of being weak (W), with capacity equal to µW , where
0 < µW < µS. A contestant’s type is private information and independent of the types of
the other contestants. Except for this uncertainty with respect to contestants’ capacities,
the contest remains the same as the one defined at the beginning of Section 3.

4.1 Probability of winning

In a symmetric equilibrium, the probability of winning function, P, faced by all the con-
testants is the same. Each contestant must play a best reply to this function conditional
on his type, and the set of best-reply distributions is the same for all the contestants con-
ditional on contestant type. Thus, we will discuss the best reply and optimal strategy
for type t ∈ {S,W}, recognizing that we are in fact referring to the best reply for any
contestant whose type is t.
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To initiate the analysis of capacity uncertainty, first note that, for essentially the
same reason as advanced in the capacity-certainty case, the conclusion of Lemma 1—
that the equilibrium performance distributions are continuous—also holds in the capacity-
uncertainty case. This result is recorded below.

Lemma 2. In a symmetric equilibrium, the probability of winning function, P, is con-

tinuous and P(0) = 0.

Next, note that, by (8), P satisfies the following condition: for each type t ∈ {S,W},
there exist nonnegative scalars, αt and βt , such that

P(x)≤ αt +βtx ∀ x≥ 0 (16)

Suppt ⊂ {x≥ 0 : P(x) = αt +βt x}, (17)

where Suppt denotes the support of Ft , the distribution selected by type t. Define ψ as
the concave lower envelope of the two upper support lines, {αt +βt x}t=S,W , associated
with the two types, i.e.,

ψ(x) = min[αS +βS x, αW +βW x]. (18)

Equation (16) and the definition of the concave lower envelope, ψ , imply that

∀ t ∈ {S,W}, αt +βt x≥ ψ(x)≥ P(x), (19)

i.e., ψ lies between the support lines and P. Equations (17) and (19) imply that SuppS

and SuppW are contained in the region where ψ meets P. In fact, in a symmetric equi-
librium, P must trace out ψ until P reaches 1. The intuition behind the proof is that
P can only grow at points in SuppS and SuppW . Since SuppS and SuppW rest on the
points at which the concave lower envelope, ψ , meets P, to stay on the envelope, P can
never increase at a rate in excess of the envelope’s rate of increase. As soon as P breaks
contact with the envelope, by equation (16), P must stay below the envelope and, given
that P cannot jump up (see Lemma 2), P cannot ever increase again. Admittedly, this
argument is a bit loose, but it captures the essence of the formal proof.

Proposition 9. There exist nonnegative constants, αS,αW ,βS,βW , and x̂ > 0, such that,

in a symmetric equilibrium, the probability of winning function, P, satisfies

P(x) =

min[αS +βS x, αW +βW x] if 0≤ x≤ x̂

1 if x > x̂
,
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where x̂ is defined by

min[αS +βS x̂, αW +βW x̂] = 1. (20)

In essence, the probability of winning function, P, is the distribution a contestant
plays against. Since P is weakly concave and, by the analysis in Section 2, playing
safe is a best reply to weakly concave continuous distributions, the type-t contestant’s
expected probability of winning in equilibrium equals P(µt). Thus, the weak concavity
of P implies the weak concavity of the value of capacity.

Corollary 1. The value of capacity is weakly concave.

Although we assumed two possible types of contestants for analytical convenience,
Corollary 1 holds true for any number of possible types, since no matter how many
types there are, P always traces out the concave lower envelope of the support lines of
all the types until P reaches 1. Thus, P is always weakly concave, which implies the
weak concavity of the value of capacity.

Since the support of P equals the union of the supports of two types’ equilibrium
distributions, the following corollary is evident from Proposition 9.

Corollary 2. SuppS
⋃

SuppW = [0, x̂], where x̂ is defined by (20).

Note that, for t ∈ {S,W}, Suppt must be contained in the set of points where P

meets the t-support line. For all values of x at which the S-support line lies above the
W -support line, the S-support line must lie above P. Thus, these values cannot be in
SuppS. Analogously, all values of x at which the W -support line lies above the S-support
line cannot be in SuppW . The next lemma thus follows from Corollary 2.

Lemma 3. In any symmetric equilibrium, SuppS and SuppW satisfy

SuppS ⊂ {x ∈ [0, x̂] : αS +βS x≤ αW +βW x}

SuppW ⊂ {x ∈ [0, x̂] : αS +βS x≥ αW +βW x}
,

where x̂ is defined by (20) and αS,αW ,βS, and βW are the optimal dual variables.

Next, in Lemma 4, we provide a characterization of the optimal dual variables in
the maximization problems that define the support lines. These variables are generated
by the dual problem (4) of the primal problem (2) for each type. Our results show that
the W -support line always intersects the origin and that the slope of the W -support line
is always weakly greater than the slope of the S-support line.

Lemma 4. The optimal dual variables satisfy the following conditions: either (i) αS =

αW = 0 and 0 < βS = βW or (ii) αS > αW = 0 and 0 < βS < βW .
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4.2 Equilibrium configuration

Corollary 2 and Lemmas 3 and 4 provide a complete characterization of the supports of
the equilibrium distributions of the two types. They suggest that, in equilibrium, there
are only two candidate configurations for the probability of winning function, P. These
configurations are illustrated in Figures 5 and 6. Figure 5 illustrates the case where
αS > αW and βS < βW . In this configuration, the interior of SuppW lies strictly below
SuppS, which implies that weak contestants concede to strong ones and concentrate
their capacity on beating other weak contestants. We call equilibria with this configu-
ration, “concession equilibria.” Figure 6 illustrates the contrasting case where αW = αS

and βS = βW . In Figure 6, the union of SuppS and SuppW equals [0, x̂], but type dis-
tributions cannot be uniquely identified, since many different combinations of FS and
FW can produce the probability of winning function that is linear over the union of both
types’ supports. In this configuration, the upper bound of SuppW lies strictly above the
lower bound of SuppS, which implies that a weak contestant’s performance sometimes
tops a strong contestant’s. We thus call equilibria with this configuration, “challenge
equilibria.”19

SuppW SuppS x
`

x

1

0

ΑW + ΒW x

ΑS + ΒS x

P

Figure 5: The probability of winning func-
tion, P, in concession equilibria
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x̂SuppW ∪ SuppS
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Figure 6: The probability of winning func-
tion, P, in challenge equilibria

Before we embark on systematic investigation of equilibrium strategies, it will be
useful to illustrate our result by a simple example. In the example, there are two con-
testants and one prize, i.e., n = 2 and m = 1. Ex ante, each contestant is equally likely
to be strong or weak, i.e., θ = 1/2. Since, by Lemma 2, no one places point mass, the
probability that a given contestant wins with a realized performance level, x, equals the

19There is also a non-generic borderline case in which the conditions on the optimal dual variables for
challenge equilibria are satisfied but the upper bound of SuppW coincides with the lower bound of SuppS.
Since, in this borderline case, weak contestants still concede to strong ones, we categorize this case as a
concession configuration.
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probability that x is no less than the realized performance level of the other contestant.
Since the other contestant is equally likely to be weak or strong,

P(x) =
FS(x)+FW (x)

2
. (21)

In challenge equilibria, P is the CDF of a uniform distribution. Thus, (21) requires that
the average of FS and FW equals a uniform distribution. This case is illustrated with
µW = 1 and µS = 2 in Figure 7. Since P is a uniform CDF and the average capacity of
the two types is 3/2,

x
3
=

FS(x)+FW (x)
2

∀ x ∈ [0, 3]. (22)

Note that FW and FS are not unique. All that is required for FW and FS to be equilibrium
distributions for weak and strong types, respectively, is the satisfaction of (22). Fig-
ure 7 presents a particular choice of distribution functions satisfying (22). In Figure 7,
the distributions chosen by weak and strong contestants are as follows: the weak type
plays the uniform distribution on [0, 3/2] with probability 5/6 and plays the uniform
distribution on [3/2, 3] with probability 1/6; the strong type plays the uniform distribu-
tion on [0, 3/2] with probability 1/6 and plays the uniform distribution on [3/2, 3] with
probability 5/6. Since P is a uniform distribution, all the distributions with the same
mean whose support is enclosed in P’s produce the same payoff when used against P.
Thus, we can evaluate the probability of winning of the weak and of the strong by eval-
uating P at µW and µS, respectively. This yields a probability of winning equal to 1/3
for the weak type and 2/3 for the strong type.

It is not always possible to satisfy the conditions for a challenge equilibrium. For ex-
ample, consider the case where µW = 1 and µS = 5. Given these parameters, challenge
equilibria require that

x
6
=

FS(x)+FW (x)
2

∀ x ∈ [0, 6]. (23)

Equation (23) implies that, over the support of FW ,

x
6
≥ FW (x)

2
. (24)

Integrating both sides of (24) over FW yields

∫ x
6

dFW (x)≥
∫ FW (x)

2
dFW (x). (25)

Given that µW = 1, the left hand side of (25) equals 1/6. However, the right hand side
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of (25) equals 1/4. Thus, (25) cannot hold. Thus, no challenge equilibria exist. In fact,
quite generally, when the weak type’s capacity is too small relative to the strong type’s,
it is never possible to generate a probability of winning function which is linear over
the union of both types’ supports. In this case, only “concession equilibria” exist. A
concession equilibrium is illustrated in Figure 8. In this symmetric equilibrium, weak
contestants use a uniform distribution over [0, 2] while strong contestants use a uniform
distribution over [2, 8]. A weak contestant can win only when the other contestant is
also weak, which occurs one half of the time. Moreover, if both contestants are of the
same type, both are using the same distribution and thus have an equal probability of
winning. Hence, a weak contestant’s probability of winning is (1/2)×(1/2) = 1/4, and
similarly, a strong contestant’s probability of winning is (1/2)+(1/2)× (1/2) = 3/4.

3
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P FSFW
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x

Figure 7: An example of a challenge equi-
librium. In the example, µW = 1, µS = 2, the
number of contestants, n, equals 2, and the
number of prizes, m, equals 1. A contes-
tant’s probability of being strong, θ , equals
1/2.
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Figure 8: An example of a concession equi-
librium. In the example, µW = 1, µS = 5, the
number of contestants, n, equals 2, and the
number of prizes, m, equals 1. A contes-
tant’s probability of being strong, θ , equals
1/2.

Now consider the general case with 1 ≤ m ≤ n− 1, 0 < θ < 1, and 0 < µW < µS.
Recall that there are only two candidate equilibrium configurations: concession and
challenge. We denote the concession configuration by C and, for t ∈ {S,W}, denote
by pC

t the type-t contestant’s expected probability of winning in the concession con-
figuration. Since, in the concession configuration, weak contestants concede victory
to strong contestants, the expressions for pC

S and pC
W are determined by the following

prize-allocation rules: (a) strong contestants always have “absolute priority,” i.e., no
weak contestant wins a prize unless all strong contestants win and (b) contestants of
the same type have the same chance of winning. These rules imply that pC

S and pC
W are

uniquely determined by n, m, and θ . Since we can analyze selection efficiency, which
is the focus of this section, without presenting the expressions for pC

S and pC
W , for the

sake of brevity, we omit developing them.
We denote the challenge configuration by G and, for t ∈ {S,W}, denote by pG

t

the type-t contestant’s expected probability of winning in the challenge configuration.
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Since, in the challenge configuration, both types’ support lines overlap and intersect the
origin, we must have pG

W : pG
S = µW : µS. By symmetry, ex ante each contestant has a

chance of winning equal to m/n, so θ pG
S +(1−θ)pG

W = m/n. Hence,

pG
S =

mµS

n [θ µS +(1−θ)µW ]
and pG

W =
mµW

n [θ µS +(1−θ)µW ]
.

The next lemma shows that, which configuration emerges, for a given parameteri-
zation of the model, is determined by which configuration favors the weak type.

Lemma 5. If pC
W and pG

W denote, respectively, the weak type’s probability of winning

under the concession and challenge configurations, concession equilibria exist if and

only if pC
W ≥ pG

W ; challenge equilibria exist if and only if pC
W < pG

W .

The intuition of Lemma 5 is not difficult to understand. Enabling contestants to
choose performance distributions offers weak contestants the possibility of outperform-
ing strong ones. However, challenging the strong may not always be optimal for a given
weak contestant, since he does not know his competitors’ types and, to challenge, he
has to prolong the right tail of his performance distribution, which, through the capac-
ity constraint, increases the probability of low performance, thus reducing his chance
of winning when competing against weak competitors. Therefore, a weak contestant
challenges the strong only when challenging benefits him.

4.3 Selection efficiency

Lemma 5 helps us examine selection efficiency in contests. Before we analyze selec-
tion efficiency, we need to settle on its definition. Selection efficiency of a mechanism
is a characteristic of the mechanism but not the quality of contestants per se. The most
efficient selection mechanism is a mechanism under which strong contestants have ab-
solute priority. For a given contest, maximum selection efficiency is the probability that
a selected contestant will be strong under the most efficient selection mechanism. So,
for example, if there are two contestants and one prize, and the probability that a given
contestant is strong equals 1/2, then the most efficient mechanism will select a strong
contestant whenever at least one of the two contestants is strong. Since 3/4 of the time
at least one contestant is strong, maximum selection efficiency equals 3/4. We denote
maximum selection efficiency by Π∗. We compare maximum selection efficiency with
actual selection efficiency, denoted by Π. Actual selection efficiency is the equilibrium
probability of a selected contestant being strong in a symmetric equilibrium. Define
∆Π = Π∗−Π, where ∆Π represents selection efficiency loss. A contest is said to be
efficient if and only if ∆Π = 0. While actual selection efficiency measures the quality of
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prize winners, selection efficiency loss measures the reduction in winner quality caused
by a given contest mechanism. A contest mechanism has poor selection properties if it
produces large selection efficiency losses.20

Denote by ΠC and ΠG the actual selection efficiency in concession and challenge
equilibria, respectively. In concession equilibria, strong contestants have absolute pri-
ority, so ΠC = Π∗. In challenge equilibria, each contestant’s probability of winning is
proportional to his capacity, so by Bayes’ Rule,

Π
G =

θr
(1−θ)+θr

, (26)

where r = µS/µW > 1, the ratio of the strong type’s capacity to the weak type’s. We
interpret r as a measure of strength asymmetry. By Lemma 5, the equilibrium configu-
ration is always the one that favors the weak type, so

Π = min
[
Π

G, Π
C
]
, (27)

where ΠG is given by (26) and ΠC = Π∗. After deriving the expression for Π∗, the next
proposition follows from (27) and the definition of ∆Π.

Proposition 10. Maximum selection efficiency, Π∗, actual selection efficiency, Π, and

selection efficiency loss, ∆Π, are given as follows:

Π
∗ =

n

∑
i=0

(
n
i

)
min

[
i
m
,1
]

θ
i(1−θ)n−i; (28)

Π = min
[

θr
(1−θ)+θr

, Π
∗
]

; (29)

∆Π = max
[

Π
∗− θr

(1−θ)+θr
, 0
]
. (30)

Using Proposition 10, we perform comparative statics on selection efficiency.

Corollary 3. The comparative static results on Π∗, Π, and ∆Π are as follows:

i. For fixed θ , n and m, maximum selection efficiency, Π∗, is constant in r, the strength

asymmetry, actual selection efficiency, Π, is weakly increasing in r, and selection

efficiency loss, ∆Π, is weakly decreasing in r.
20Our approach of using two metrics, actual selection efficiency and selection efficiency loss, contrasts

with Hvide and Kristiansen (2003) who only use actual selection efficiency as the metric of efficiency.
Like our paper, Ryvkin and Ortmann (2008) and Ryvkin (2010) also take into account both actual selec-
tion efficiency and selection efficiency loss, but in a somewhat different way: in these two papers, actual
selection efficiency can be thought of as represented by the expected ability of the winner while selection
efficiency loss by the expected ability rank of the winner.
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ii. For fixed r, n, and m, both maximum selection efficiency, Π∗, and actual selection

efficiency, Π, are strictly increasing in θ , the probability of a contestant being

strong, whereas selection efficiency loss, ∆Π, is nonmonotonic in θ .

iii. For fixed θ , r, and m, maximum selection efficiency, Π∗, is strictly increasing in

n, the number of contestants, and both actual selection efficiency, Π, and selection

efficiency loss, ∆Π, are weakly increasing in n.

iv. For fixed θ , r, and n, maximum selection efficiency, Π∗, is strictly decreasing in

m, the number of prizes, and both actual selection efficiency, Π, and selection effi-

ciency loss, ∆Π, are weakly decreasing in m.

v. Fixing θ and r while increasing contest size by multiplying both n and m by a

common integer factor, k, strictly increases maximum selection efficiency, Π∗, and

weakly increases actual selection efficiency, Π, and selection efficiency loss, ∆Π.

Shifts in model parameters affect both selection efficiency loss, ∆Π, and maximum
selection efficiency, Π∗. Selection efficiency loss is minimized when weak contestants
concede to strong ones. The likelihood that a weak contestant will concede is increased
by (i) an increase in the degree of strength asymmetry, measured by r, (ii) a decrease
in the number of contestants, n, and (iii) an increase in the number of prizes, m. Selec-
tion efficiency loss is not monotonic in contestant quality, measured by θ . Increasing
θ increases a weak contestant’s benefit from challenging the strong. Once this bene-
fit exceeds a threshold, only challenge equilibria can be supported. This effect raises
∆Π above zero. However, as θ continues to increase toward 1, the probability that a
contestant is weak decreases to 0, in which case ∆Π approaches 0 again.

The effect of a parameter shift on maximum selection efficiency, Π∗, is solely de-
termined by the effect of the shift on the distribution of contestant quality. Since max-
imum selection efficiency depends on the probability that winners are strong but not
on the winners’ absolute strength, changes in absolute strength, µS and µW , or relative
strength, r, do not affect maximum selection efficiency. In contrast, an increase in the
number of contestants, n, a decrease in the number of prizes, m, and an increase in each
contestant’s probability of being strong, θ , all increase maximum selection efficiency.
Although, the effect is a bit more subtle, increasing contest size also increases maxi-
mum selection efficiency: when there are few contestants, the realized proportion of
strong contestants is more likely to deviate from its expected value, θ . If more strong
contestants are drawn than prizes, the excess of strong contestants has no positive effect
on winner quality, but if less are drawn, it has a negative effect. Thus, random variation
in contestant quality lowers maximum selection efficiency. By the weak law of large
numbers, scaling up the contest reduces random variation in the realized fraction of
strong contestants and, hence, increases maximum selection efficiency.
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The effect of a parameter shift on maximum selection efficiency is mechanical; the
effect on selection efficiency loss is strategic. A change in parameters, such as a change
in n or m, frequently has the same directional effect on maximum selection efficiency
and selection efficiency loss, increasing or decreasing both. Since actual selection effi-
ciency is the difference between maximum selection efficiency and selection efficiency
loss, this directional alignment could potentially lead to ambiguous comparative stat-
ics. However, our results imply that, whenever this happens, the mechanical effect is
always weakly dominant. Thus, the effect of a change in parameters on actual selec-
tion efficiency is always weakly monotonic. This result can be contrasted with Hvide
and Kristiansen (2003), who find that an increase in n or θ can sometimes decrease
actual selection efficiency. Their result is driven by the assumption that contestants
can only choose between a constant and a Bernoulli-distributed random variable. This
assumption prevents strong contestants from playing win-small/lose-big strategies to
better accommodate the challenge brought by weak contestants and, hence, amplifies
the negative strategic effect on actual selection efficiency when n or θ increases.

5 Selection efficiency of modified contest mechanisms

In Section 4, we studied selection efficiency of a simple contest mechanism in which
contestants compete for several identical prizes with no restriction imposed on distribu-
tional choices apart from nonnegativity and capacity. In this section, we treat this simple
mechanism as the benchmark and study whether a principal who seeks to maximize se-
lection efficiency could do better with some simple modifications of the benchmark
mechanism. As Corollary 3 has already performed comparative statics on selection ef-
ficiency with respect to the number of contestants, the number of prizes, the quality of
contestants, and strength asymmetry, to avoid repetition of analysis, in this section, we
assume that all these contest parameters are fixed for the principal. Thus, maximum
selection efficiency is fixed, in which case the two metrics—actual selection efficiency
and selection efficiency loss—used for efficiency evaluation are equivalent. Thus, with-
out loss of generality, in what follows, we use actual selection efficiency as the base of
our analysis. We consider three alternative contest arrangements that are close to the
benchmark mechanism and commonly observed in practice.

5.1 Scoring caps

Suppose that performance is capped by a certain level, x̄, so that contestants are re-
stricted to distributions satisfying F(x̄) = 1. The use of a scoring cap imposes an upper
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bound on contestants’ performance levels. Many real-life contests have a scoring cap.
For example, in examinations and many sports games, contestants’ performance levels
are bounded by full scores. A principal can change this upper bound by changing the
difficulty of reaching a full score. A scoring cap can be imposed if the principal can
credibly specify that all performance levels no less than x̄ will be treated the same for
the purpose of determining contest winners. Under this specification, contestants have
no incentive to assign probability weight to performance levels exceeding x̄.

When x̄∈ [µW , µS), strong contestants cannot fully utilize their capacity while weak
contestants can. Thus, a scoring cap between µW and µS handicaps strong contestants.
It is obvious that imposing a scoring cap less than µW also handicaps strong contestants
as it forces them to utilize the same amount of capacity as weak ones. Hence, imposing
a scoring cap strictly less than µS never improves selection efficiency. Thus, in what
follows, we focus on the case where x̄≥ µS.

A performance level equal to the scoring cap cannot be topped. Thus, in equilib-
rium, point mass on the scoring cap can possibly occur, which implies that the continu-
ity of the probability of winning function, P, may break at the scoring cap.

Lemma 6. In a symmetric equilibrium, the probability of winning function, P, intersects

the origin and is continuous on [0, x̄), where x̄ denotes the scoring cap.

Although a discontinuity of P can occur at x̄, by Lemma 6 and the fact that P is
bounded above by P(x̄), P is upper semicontinuous. Given that P is nondecreasing and
bounded, upper semicontinuity of P guarantees the existence of a best reply to P and
makes the analysis in Section 2.1 applicable here. Hence, conditions (16) and (17) still
hold, which implies that the support of contestants’ performance distributions must still
fall in the range where the probability of winning function, P, meets ψ , the concave
lower envelope of the two upper support lines. In this case, Lemma 4 still holds, which
implies that there are still only two candidate equilibrium configurations: concession
and challenge. Since both types’ configuration-conditioned payoffs are determined by
the configuration-conditioned prize allocation rules presented in Section 4.2, and also
since imposing a scoring cap x̄∈ [µS,∞) does not change any prize-allocation rule, both
types’ configuration-conditioned payoffs are unaffected by the scoring cap. Since the
equilibrium configuration is the one with the prize allocation rules favoring the weak
type, which result is given by Lemma 5, whose proof is unaffected by the existence
of a scoring cap, the equilibrium configuration must be unaffected by the scoring cap
x̄ ∈ [µS,∞). Thus, we obtain the next result.

Proposition 11. Imposing a scoring cap, weakly greater than the strong type’s capacity,

does not affect any type’s probability of winning or selection efficiency.
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Although the use of a scoring cap greater than µS does not affect selection efficiency,
it changes the equilibrium distribution: any weight that is originally placed above x̄ is
now moved to x̄ and, to balance its effect on the mean, some weight that is originally
placed over a neighborhood range below x̄ is also moved to x̄. If we lower x̄, more and
more probability weight will be placed on x̄ rather than spread over the neighborhood
of x̄, which results in a simple mean-preserving contraction of contestant performance,
the opposite operation of a simple mean-preserving spread. Hence, a principal who
is averse to contestant performance riskiness prefers a tighter scoring cap, which, by
Proposition 11, has no side effect on selection efficiency if the cap exceeds µS.

Proposition 12. A principal who is averse to contestant performance riskiness weakly

prefers a tighter scoring cap, if the scoring cap is weakly greater than µS.

5.2 Penalty triggers

In the previous sections, contestants were not penalized for bad performance. In this
section, we consider whether selection efficiency can be improved by the use of “penalty
triggers,” i.e., penalties for performance levels below x > 0. We consider the case where
x ≤ µW so that it is possible for weak contestants to completely avoid the penalty. We
assume that the penalty is sufficiently large relative to the prize for winning so that
no contestant has an incentive to place any weight below x. Thus, the use of penalty
triggers imposes a lower bound, x, on the performance levels chosen by contestants.

When penalty triggers are used, for t ∈ {S,W}, we can think of type-t’s performance
as the sum of two parts: a safe performance level equal to x, submitted to avoid the
penalty, and a random performance level whose expected value equals µt−x, submitted
to maximize the chance of winning. Thus, the contest is essentially the same as the one
studied in Section 4 except that now each type-t contestant’s “manipulable” capacity
is reduced to µt − x. An increase in x increases (µS− x)/(µW − x), the ratio of S’s
manipulable capacity to W ’s. The next proposition thus follows from (i) in Corollary 3.

Proposition 13. Increasing the threshold that triggers the penalty weakly improves se-

lection efficiency.

Proposition 13 suggests that, if a principal wants to use contests to promote the
most able employees, penalty triggers will be beneficial to selection efficiency. Propo-
sition 13 thus provides an explanation for why mixed incentive systems with both “car-
rots” and “sticks” are often found in practice.

Since penalty triggers can improve selection efficiency, which is the major concern
of the principal in our model, we only briefly talk about their effect on performance
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riskiness. The next result implies that the effect is ambiguous.

Proposition 14. If the contest without penalty triggers has a concession equilibrium,

then imposing penalty triggers will induce a mean-preserving contraction of the weak

type’s performance while a mean-preserving spread of the strong type’s.

Since the unconditional performance distribution is a convex combination of the two
types’ distributions, Proposition 14 implies that the effect of penalty triggers on perfor-
mance riskiness is ambiguous. Thus, in contrast to the use of scoring caps, which re-
duces performance riskiness but never improves selection efficiency, the use of penalty
triggers increases selection efficiency but has an ambiguous effect on performance risk-
iness. Thus, scoring caps and penalty triggers are complements rather than substitutes.

5.3 Localizing contests

In this subsection, we study the effect on selection efficiency of dividing the original
grand contest involving n contestants and m prizes into multiple smaller local contests
with contestants in the same local contest competing for prizes allocated to that local
contest. An admissible division requires the number of contestants in each local contest
summing up to n and the number of prizes summing up to m. The next proposition
shows that localizing a contest weakly lowers selection efficiency.

Proposition 15. Localizing a contest never improves selection efficiency. The effect is

neutral if and only if every local contest has challenge equilibria.

The intuition of Proposition 15 is easiest to understand if we look at the effect of the
opposite operation — grouping local contests together. Grouping local contests acts in
a similar way as scaling up those local contests, which by (v) in Corollary 3, weakly
increases selection efficiency. When every local contest has challenge equilibria, im-
plying that, in every local contest, the competition is so intense that weak contestants
cannot afford to concede to strong ones, grouping local contests into a bigger contest
will never bring down the intensity of competition, so the bigger contest will also induce
challenge equilibria. Since, in challenge equilibria, actual selection efficiency is given
by (26), which is independent of contest size, selection efficiency remains unchanged
when grouping local contests with challenge equilibria.

6 Applications

Our framework can be applied to study capacity-constrained contests where contestants
have great freedom in manipulating performance distributions. We illustrate the ap-
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plication to mutual fund tournaments in Section 6.1. In Section 6.2, we study R&D
contests in which prize value is not fixed but dependent on winner performance. Al-
though winning small and winning big are no longer payoff equivalent there, we show
that contestants still have win-small/lose-big preferences and these preferences lead
to risk-taking strategies safer than social optimum. In Section 6.3, we show how our
framework can be applied to study stochastic contests in which each contestant decides
when to stop a privately observed stochastic process. This application adds a new inter-
pretation of our framework.

6.1 Mutual fund tournaments

Many studies identify a convex relation between a mutual fund’s ranking and its capital
inflows (Chevalier and Ellison (1997), Sirri and Tufano (1998), and Huang, Wei, and
Yan (2007)). Since fees charged by mutual funds are linked to assets under manage-
ment, increased capital inflows lead to higher profits. Thus, funds have strong incentives
to be “top performers.” At the same time, the capital inflows generated by a mediocre
and a bottom ranking are not very different, since, in either case, the fund is unlikely
to attract ranking-motivated investors. For this reason, we illustrate the implications of
our results in the context of mutual fund tournaments, in which n managers compete
for the top-m ranks with all the winners receiving the same positive payoff and all the
losers receiving zero. When m is small relative to n, this payoff structure approximates
the “convexity” of fund flows documented in the literature.

Let N = {1, · · · ,n} be the set of n managers. Following Berk and Green (2004),
we express the return of manager i ∈N , in excess of the passive benchmark, as

Ri = µi + εi,

where µi is a constant, determined by manager i’s capacity, and εi is fund i’s idiosyn-
cratic risk. In contrast to Berk and Green (2004) in which the distribution of ε is exoge-
nously specified, we assume that, by using dynamic trading strategies, manager i ∈N

can choose the distribution of εi, subject to E[εi] ≤ 0.21 To use the analysis developed
earlier, which assumed that the support of a performance distribution is bounded below
by a constant, we assume that, manager i ∈N will be penalized, such as being fired,

21Theorem 4 in Cover (1974) shows that any return distribution on the nonnegative real line subject to
a mean constraint can be produced by a sequential gambling scheme on fair coin tosses. Rubinstein and
Leland (1981) find that a fund manager can create an option position by using dynamic trading strategies
even if options do not exist in the market. These results suggest that, even with a small number of return
distributions directly provided by the assets in the market, fund managers are able to have access to a
much larger set of return distributions by using dynamic trading strategies.
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if Ri falls below a certain threshold, say R, where R < min{µi}i∈N , and this penalty
is sufficiently large such that manager i has no incentive to place probability weight
on excess return levels below R. Under these assumptions, each manager i ∈N in-
dependently chooses the distribution of Ri on [R,∞), subject to his capacity constraint,
E[Ri]≤ µi.

When all the managers have the same fixed µ , these assumptions map mutual fund
tournaments into the certain-capacity contest model studied in Section 3. Based on
the results we obtained there, we make three predictions about fund managers’ risk-
taking strategies. First, by Proposition 3, neither the safest nor the riskiest strategy is
played in equilibrium. This result is in sharp contrast to Chen, Hughson, and Stoughton
(2012) who study fund managers’ risk-taking strategies in mutual fund tournaments
and find that equilibrium strategies are always extremal. Their result is largely driven
by their symmetric return distribution assumption. Empirical evidence seems to favor
our prediction of limited risk taking. For example, as shown by Falkenstein (1996),
mutual funds shun both high and low volatility stocks. Second, given that mutual fund
tournaments are selective, i.e., “star” funds are a minority of the total population of
competing funds, Proposition 5 predicts positive skewness of the idiosyncratic risk of
funds. This prediction coincides with the empirical evidence from Wagner and Winter
(2013). Third, by Propositions 5 and 6, we predict that, when the competition between
funds becomes more intense (maybe because of cooling down of market hotness, which
requires funds to be exceptionally outstanding to attract a higher volume of capital
inflows), funds take more idiosyncratic risk and both the dispersion and the skewness
of the idiosyncratic risk increase.

Almost all mutual funds belong to a mutual fund family. Kempf and Ruenzi (2008a)
and Kempf and Ruenzi (2008b) find evidence for intrafirm competition among fund
managers within the same mutual-fund family for marketing expenses. When man-
agers’ capacities, µ , vary and managers are privately informed about their capacity, the
problem for the top management of a mutual fund family of ensuring efficient allocation
of marketing resources to managers with highest capacities becomes salient. Given that
the top management typically directs marketing resources toward the best-performing
funds within the family, our results in the capacity-uncertainty case can be applied.
Proposition 13 suggests that, to improve allocation efficiency, the top management can
raise up the penalty trigger R. Propositions 11 and 12 suggest that the top management
can reduce funds’ risk and maintain allocation efficiency by using a scoring cap, i.e.,
committing to offer all the managers with excess returns hitting or exceeding the cap
the same chance of obtaining the marketing resources.
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6.2 R&D contests

Does market competition bias firms against risky R&D strategies? This question was
first addressed by Dasgupta and Stiglitz (1980) with a model that can be thought of as
a variation of our earlier setup. In their model, several identical contestants (research
units) compete for one prize. Each contestant independently chooses a distribution of
discovery times for an innovation subject to the same mean-discovery time constraint.
The contestant with the earliest realized discovery time wins the competition. However,
in contrast to our setup, the winner’s prize is not fixed but discounted continuously at
a fixed rate. Dasgupta and Stiglitz (1980) restrict contestants’ risk choices to a se-
quence of distributions that differ from one another by a mean-preserving spread and
find that the equilibrium strategy is safer than social optimum. However, as pointed out
by Klette and de Meza (1986), the derivation in Dasgupta and Stiglitz (1980) is erro-
neous: Dasgupta and Stiglitz assume both costless risk taking and an interior solution
to risk taking in the contest, which are often inconsistent assumptions. Following Das-
gupta and Stiglitz (1980), Klette and de Meza (1986) further impose a symmetric dis-
tribution assumption on admissible risk choices, and, under this symmetry assumption,
show that contestants play riskiest strategies in equilibrium and thus the market equi-
librium cannot be safer than social optimum.22 In an independent work, Bhattacharya
and Mookherjee (1986) find results consistent with Klette and de Meza (1986). Both
Bhattacharya and Mookherjee (1986) and Klette and de Meza (1986) acknowledge that
the symmetric distribution assumption plays a crucial role in their analysis.

We reexamine the question originally raised by Dasgupta and Stiglitz (1980) by fol-
lowing the model structure of Dasgupta and Stiglitz (1980) and Klette and de Meza
(1986) while relaxing the distributional restrictions imposed on risk choices. To sim-
plify the mathematical expressions, we assume that there are just two contestants. Ex-
tension to the multi-contestant case does not change the qualitative nature of the result.
Following Klette and de Meza (1986), we assume that there exists a time by which it
is certain that a contestant discovers the innovation. Denote this time by T ∗. Under
this assumption, the support of an admissible distribution is contained in [0, T ∗] and
the riskiest strategy is the Bernoulli distribution with all weight placed on 0 and T ∗.
Society only benefits from the first innovation, which produces a nominal social value
equal to Vs. If the first innovation takes place at time t, the discounted social value is
e−rtVs, where r represents the discount rate. Given this social payoff function, society

22Klette and de Meza (1986) further argue that, although, both society and contestants prefer the same
risk-maximizing strategy, the contest effect makes the contestants’ gain from risk-taking greater than
society’s. Thus, if a cost of risk-taking were introduced into the analysis, contestants might choose
excessively risky strategies.
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prefers both contestants to play the riskiest strategy (Klette and de Meza (1986) and
Bhattacharya and Mookherjee (1986)). This is because of the “option-effect”: fixing
one contestant’s realized performance, social payoff is convex in the other contestant’s
performance, so society is risk-seeking and prefers the other contestant to play the riski-
est strategy. Applying this argument to both contestants shows that the unique social
optimum is to have both contestants play the riskiest strategy.

Now consider contestant strategies. Note that, in Dasgupta and Stiglitz (1980) and
Klette and de Meza (1986), performance is measured by the discovery time, t. In this
case, the smaller the measure, the better the performance. As this is not convenient for
us to apply our earlier framework, we make one cosmetic change by measuring per-
formance as the time saved from a quicker discovery, interpreted as innovation speed.
Denote this new performance measure by x, where x = T ∗− t. With this change, the
larger the measure, the better the performance. The contest is between two equally
matched contestants, both independently choosing a performance distribution on the
closed interval [0, T ∗] with the mean no greater than µ , where µ ∈ (0, T ∗) denotes a
contestant’s capacity. The one with better performance wins and ties are broken ran-
domly. The winner’s payoff when his realized performance equals x is e−r(T ∗−x)Vc,
where Vc represents the nominal value of the winner’s prize. The loser’s payoff is 0.
The following proposition presents the strategies played in a symmetric equilibrium.

Proposition 16. In the R&D contest, the symmetric equilibrium is given as follows:

i. if x̂≤min[T ∗ er(x̂−T ∗), 1/r], where x̂ is implicitly defined by

x̂+
1
r
+

1− erx̂

r2x̂
= µ, (31)

there exists a symmetric equilibrium in which both contestants play

F(x) =

x
x̂ er(x̂−x) if 0≤ x≤ x̂

1 if x≥ x̂
; (32)

ii. otherwise, in a symmetric equilibrium, both contestants play

F(x) =


x

2T ∗−x′er(T∗−x′) er(T ∗−x) if 0≤ x≤ x′

x′

2T ∗er(x′−T∗)−x′
if x′ ≤ x < T ∗

1 if x≥ T ∗

, (33)

where x′ is determined by making the capacity constraint bind.
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When r goes to 0, prize value is not discounted and the R&D contest becomes the
contest with a scoring cap studied in Section 5.1. In this case, the condition in (i) of
Proposition 16 reduces to x̂ ≤ T ∗. When the cap constraint is not binding, i.e., when
x̂ ≤ T ∗, both contestants submit uniformly distributed random performance, which is
implied by (32) with r→ 0. When the cap constraint is binding, both contestants mix
between a uniform distribution over a common interval and a degenerate random per-
formance at the scoring cap, T ∗, which is implied by (33) with r→ 0.

Introducing the time discounting of prize value has two effects on contestant strate-
gies. First, if the scoring cap is not binding, a convex prize-value function leads to a
right-skewed equilibrium strategy, even when there are just two contestants. This is
because an equilibrium requires a constant marginal incentive for a contestant over his
distribution support, and thus, to produce this constant marginal incentive, the convex
prize-value function must be counterbalanced by a concave probability of winning func-
tion over a contestant’s distribution support. Since, in equilibrium, no one places point
mass on [0,T ∗) (see Lemma 6), if the scoring cap is not binding, a concave probability
of winning function implies a concave CDF played by the competitor, which further
implies the right-skewness of the equilibrium strategy. The larger the discount rate, r,
the more right-skewed the equilibrium strategy. By Proposition 5, this right-skewness
will be further enhanced if there are more than two contestants.

Second, an increase in the convexity of the prize-value function, produced by an
increase in r, makes it more likely that the scoring cap is binding and contestants place
point mass on the scoring cap. There are basically two reasons for that. First, increasing
the convexity of the prize-value function increases the right-skewness of the equilibrium
distribution, which prolongs the right tail of the distribution and makes it more likely
that the right tail hits the scoring cap. Second, increasing the convexity of the prize-
value function by an increase in the discount rate, r, does not affect prize value at
the maximum performance level permitted by the scoring cap (immediate innovation)
but reduces it at other performance levels. Thus, increasing prize-value discount gives
contestants more incentives to put weight on immediate innovation.

Note that, although in the R&D contest, prize value depends on winner performance,
the rank-dependent reward feature and the jump in contestant payoff created by winning
persist, which generates a preference for win-small/lose-big strategies. This preference,
through strategic interaction, concavifies the performance-payoff relation and, in con-
trast to Bhattacharya and Mookherjee (1986) and Klette and de Meza (1986), leads to
equilibrium strategies safer than social optimum. Thus, our result suggests that the im-
plication of Dasgupta and Stiglitz (1980) holds if contestants have access to a wider
set of risk-taking strategies that are not restricted by symmetry or the mean-preserving-
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spread constraints. Moreover, when the condition in (i) of Proposition 16 is satisfied,
which requires T ∗ being neither too small nor too large and r being sufficiently small,
the equilibrium strategy is much safer than social optimum; no one gambles on the im-
mediate innovation, and every contestant randomizes performance levels over a short
range. In this case, society cannot have a quick innovation and much of the “option-
value” of multiple independent research units is lost.

6.3 Stochastic contests

In Section 6.1, we applied our framework to mutual fund tournaments. In fact, funding
competition also takes place in alternative investment sector. For example, private eq-
uity (PE) funds whose performance is “top quartile” among the PE funds started in the
same vintage year receive special attention from investors. Investors select PE funds and
benchmark performance based on top-quartile results. As a result, PE managers seek a
top-quartile ranking, which benefits the marketing of new funds (Harris, Jenkinson, and
Stucke (2012)).

In contrast to mutual funds, which are usually open-end, PE funds typically have
a limited partnership structure with a finite lifespan, usually 10-13 years. During the
life of a PE fund, the PE managers make investments and eventually exit from the in-
vestments to realize capital gains (Cumming and Johan (2009)). PE managers have
significant discretion over the timing of exit (Robinson and Sensoy (2013)). The real-
ized returns after exit are, in most cases, a PE fund’s final performance, because, typ-
ically, PE managers are contractually not allowed to reinvest the proceeds from earlier
investments (Cumming and Johan (2009)).

Here, we model the competition among PE managers as a stochastic contest in
which each manager decides when to exit investments to realize capital gains. Although
the return of the investments follows a pre-specified stochastic process, a manager can
choose among different return distributions by choosing among different exit timing
strategies. We show that our framework can be applied to study this contest when the
stochastic process is privately observable.

Suppose there are n managers competing for m identical prizes. Manager i∈{1, · · · ,n}
privately observes the continuous-time realization of his stochastic process X i =(X i

t )t∈R+

with X i
0 = µi, where µi > 0 is a constant. The private information assumption here is

plausible, because PE funds historically, in most legal domiciles, have not been re-
quired to submit public audited, periodic return reports, and they normally provide their
investors with periodic reports under confidentiality agreements that prevent informa-
tion sharing with the public (Harris, Jenkinson, and Stucke (2012)). We assume that
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the processes X i are independent. Manager i decides when to stop his own process X i,
based on his observation of X i. We assume that stopped values are private information
until all the managers stop their processes, and every manager has to stop before a dead-
line T < ∞. We assume that T is sufficiently large. The m managers with the highest
stopped values each win a prize. This assumption is consistent with the practice that
money multiple is commonly used as a measure of PE performance (Harris, Jenkinson,
and Stucke (2012)). Ties are broken randomly.

Seel and Strack (2013) are the first to study this kind of stochastic contests. They
show that the problem of finding the optimal stopping strategy can be reduced to the
problem of finding the optimal performance distribution. This is because a contestant’s
stopping strategy affects the contestant’s payoff only via its impact on the contestant’s
performance distribution. Thus, to solve for the equilibrium, one can first find the equi-
librium performance distribution and then verify that there exists a stopping strategy
that induces the equilibrium performance distribution. The second step is known, in the
probability literature, as Skorokhod embedding problem (Skorokhod (1965)), which
studies whether a distribution is feasible by stopping a stochastic process.

We consider two types of stochastic processes here. One is Brownian motion ab-
sorbed at zero (a manager has to stop if his Brownian Motion hits zero). The other
is geometric Brownian motion. The existing literature, e.g., Ankirchner, Hobson, and
Strack (2014), shows that any distribution that can be induced by stopping these two
stochastic processes in bounded time must lie on the nonnegative real line and have its
mean weakly less than the initial value of the process. Thus, the set of feasible distri-
butions in these stochastic contests is included in the set of feasible distributions in our
earlier framework, with the initial value of a stochastic process representing a contes-
tant’s capacity. When contestants are ex ante homogeneous, the certain and uncertain
capacity cases are analyzed in Sections 3 and 4 respectively, with contestants’ equilib-
rium performance distributions being Complementary Beta. Since a Complementary
Beta distribution is absolutely continuous and has a compact support and positive den-
sity everywhere on its support, Proposition 5 in Ankirchner, Hobson, and Strack (2014)
implies that Complementary Beta distributions can be induced by stopping these two
stochastic processes in bounded time.23 Thus, the equilibrium and comparative static
results presented in Sections 3 and 4 still hold under the stochastic contest framework.

To study managers’ equilibrium exit timing strategies, we need to construct a stop-
ping strategy that induces the equilibrium performance distribution. However, such
construction is not unique. Given that PE funds have a finite lifespan, it is natural to

23Proposition 5 in Ankirchner, Hobson, and Strack (2014) is presented in Result 2 in the proof of
Lemma 7.
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examine the minimal stopping time, which is, loosely speaking, the quickest way to
induce a given distribution. This minimality concept was first introduced by Monroe
(1972) and defined as follows.

Definition 2. A stopping time τ for the process X is minimal if whenever ι ≤ τ is a

stopping time such that Xι and Xτ have the same distribution, then ι = τ almost surely.

Note that the stopping time can depend on the progress of the stochastic process, so
it is a random variable. The next lemma implies that an increase in risk taking coincides
with an increase in the expected minimal stopping time.

Lemma 7. Suppose a probability distribution F ′ is a mean-preserving spread of F. Let

τ ′ and τ be a minimal and integrable stopping time for inducing F ′ and F, respectively,

by stopping a stochastic process X. Suppose X is either a Brownian motion absorbed

at zero or a geometric Brownian motion, with its initial value equal to the mean of F ′

and F. Suppose τ ′ and τ exist. Then E[τ ′]> E[τ].

As shown in Propositions 6 and 7, when contestants have the same fixed capacity,
an increase in contest selectivity or contest size leads to a mean-preserving spread of
the equilibrium distribution. Thus, the next proposition follows from Lemma 7.

Proposition 17. Suppose the stochastic process is a Brownian motion absorbed at zero

or a geometric Brownian motion. When µi = µ for all i ∈ {1, · · · ,n}, an increase in

contest selectivity (an increase in n or a decrease in m) or an increase in contest size (an

increase in n and m by the same proportion) increases the expected minimal stopping

time to induce the equilibrium performance distribution.

Given that PE managers compete for a top-quartile ranking, Proposition 17 implies
that, as the number of competing PE funds increases, and thus the PE funding contest
is scaled up, the mean period between investment and realization will increase.

7 Conclusion

In this paper, we studied contestants’ risk-taking strategies in contests in which contes-
tants are free to choose performance distributions subject only to a capacity constraint
on mean performance. We showed that the rank-dependent reward feature of contests
gives capacity-constrained contestants win-small/lose-big preferences, which, contrary
to the results in most of the literature, always leads them to eschew risk-maximizing
strategies. In the case of symmetric known capacity, we derived closed-form solutions
for equilibrium performance distributions and analyzed the effects of contest structure
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on equilibrium behavior. We found that contestants prefer positive (negative) skewness
when the contest is selective (inclusive) and increasing contest selectivity increases both
the variance and the skewness of contestant performance. We then extended the analy-
sis to the case where contestants are unaware of each other’s capacities. In this setting,
we characterized equilibria and analyzed the effects of changing contest parameters
on strategies, payoffs, and overall contest efficiency. We showed that, contrary to the
risk-taking-and-ruin intuition, weaker contestants do not always gamble on high-risk
strategies and that, when the capacities of weak and strong contestants are sufficiently
different, the contest mechanism produces perfect selection efficiency. We then con-
sidered the effects of various modifications of the contest mechanism and applied our
results to mutual fund tournaments, R&D contests, and stochastic contests.

As well as contributing to the literature on endogenous risk taking in contests, our
paper also indirectly contributes to the solutions of Colonel Blotto games. In the sim-
plest form of these games, two contestants simultaneously decide on how to assign
their “use-it-or-lose-it” resources to different battlefields; the one who assigns more re-
sources to a battlefield wins that battlefield and each contestant’s objective is to win as
many battlefields as possible. Typically, these games have no pure strategy equilibrium
and the construction of a mixed strategy equilibrium can be technically challenging.24

Colonel Blotto games have a relaxed version, called General Lotto games, in which
the resource constraint only has to be satisfied on average (Hart (2008)). While game
theorists have focused primarily on Colonel Blotto models, more applied modelling of
contests, such as electoral contests, in economics and political science (Myerson (1993),
Lizzeri (1999), Lizzeri and Persico (2001), and Sahuguet and Persico (2006)) has typi-
cally been developed in a General Lotto framework. Because our model can be viewed
as a General Lotto model, our results extend the analysis of General Lotto games from
the two-contestant/one-prize, complete information, setting to a multi-contestant/multi-
prize setting under both complete and incomplete information.25 As pointed out by
Hart (2008), solving General Lotto games is a first step toward solving the associated
Colonel Blotto games.26

Given the simplicity of our underlying model structure and the algorithm we devel-

24See Roberson (2006) for a complete analysis of the two-contestant Colonel Blotto game with com-
plete information. See Kvasov (2007) and Barelli, Govindan, and Wilson (2014), respectively, for dis-
cussions of a non-zero-sum and a majority-rule version of Colonel Blotto games.

25In an earlier version of the paper, we included a General Lotto type of application of our framework
to student examinations where students, competing for college admissions, decide on how to allocate
their limited human capital to different potential exam questions when they prepare for the exam. This
application is available from the authors upon request.

26The second step is to construct a joint resource distribution that satisfies the overall resource con-
straint and has its marginal resource distribution for each battlefield equal to the distributional choice
derived from the associated General Lotto game.
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oped for finding equilibrium solutions, there is significant room to extend the analysis
without losing tractability. As shown by our analysis of R&D contests in Section 6.2,
our framework can be easily modified to permit the value of the prize to be dependent on
the performance levels selected by winning contestants. Mutatis mutandis, our analyti-
cal machinery can be targeted at any sort of contest in which (i) contestants’ payoffs are
rank-dependent and (ii) their strategies are capacity-constrained but otherwise flexible.

Thus, the model is extensible in a number of directions. First, our analysis could
be extended to the case where risk taking is costly. The cost of riskiness could be
based on performance variance, skewness, or entropy.27 This extension could investi-
gate the effects of the cost of riskiness on contestants’ risk-taking behavior and selec-
tion efficiency. Second, we could endogenize capacity through a two-stage model, with
capacity building through costly effort bidding in the first stage followed by capacity-
constrained distributional choice in the second stage. By taking into account the in-
teraction between effort choice and risk choice, this extension could evaluate contest
designs from a wider perspective, including effort incentive provision, risk taking, and
selection efficiency. Third, we could extend the analysis by considering asymmetric
contests where heterogeneous contestants know each other’s capacity. This extension
could represent contests between socially connected contestants with intimate knowl-
edge of each other’s abilities, e.g., insider contests for CEO succession. This extension
could also lead to a fully rationalized contest success function that maps the vector of
capacities into probability of winning.28 Finally, we could explicitly model the prefer-
ences of the contest designer and examine how these preferences affect contest design
parameters. This extension could address issues such as the dynamic consistency of
the designer’s ex ante preference for contest-based selection with the designer’s ex post
preference conditional on observed contestant actions.

27Entropy has been adopted as a measure of uncertainty that serves as a basis for a cost function in the
information economics literature. See, for example, Gentzkow and Kamenica (2014).

28Contest success functions (CSFs), especially the Tullock CSF, have been widely used in the contest
literature. Although axiomatic derivations of CSFs, based on welfare and symmetry conditions, have
been formulated (Skaperdas, 1996), less attention has been focused on how CSFs might be rationalized
as equilibrium outcomes of strategic interaction.
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Appendix: Proofs of results

We establish the following technical lemma, which we will refer to in later proofs.

Lemma 8. Suppose dP is a continuous finite measure over [0, c), where c > 0 and c can

be infinite. Let P be the nondecreasing function associated with dP. Let P̄ be a nonde-

creasing absolutely continuous function defined on [0, c) and let dP̄ be the associated

measure. Suppose that

i. for all x ∈ [0, c), P(x)≤ P̄(x),

ii. for some x′ ∈ [0, c), P(x′)< P̄(x′),

iii. for some x′′ ∈ [0, c), P(x′′) = P̄(x′′),

iv. and dP{x ∈ [0, c) : P(x)< P̄(x)}= 0.

Then P is absolutely continuous and there exists x̂ ∈ [0,c) such that

P(x) =

P̄(x) if x ∈ [0, x̂]

P̄(x̂) if x ∈ [x̂, c)
. (34)

Proof of Lemma 8. Suppose that, at xo ∈ [0,c),

P(xo)< P̄(xo). (35)

Let
Uo = {u ∈ [xo,c) : ∀x ∈ [xo,u), P(x)< P̄(x)}.

By hypothesis (35) and the continuity of P and P̄, Uo is a non-degenerate interval. We
claim that supUo = c. We show this by way of contradiction. Suppose supUo = uo < c.
By the continuity of P and P̄, P(uo)≥ P̄(uo), which implies, by condition i, that

P(uo) = P̄(uo). (36)

Since Uo is a non-degenerate interval whose supremum is uo, there must exist a se-
quence (un)n such that un < uo, un ∈ Uo, and un ↑ uo. Since un ∈ Uo and un < uo,
P(x)< P̄(x), when x ∈ [xo,un] for all n. Thus, condition iv implies that, for all n,

P(un) = P(xo). (37)

The continuity of P implies that limn→∞ P(un) = P(uo), which, by (37), further implies

P(uo) = P(xo). (38)
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Since P̄ is nondecreasing,
P̄(xo)≤ P̄(uo). (39)

Equations (35), (38), and (39) imply that P(uo)< P̄(uo), which contradicts equation (36).
This contradiction establishes that supUo = c. Thus, if P(xo) < P̄(xo), then for all
x ∈ [xo,c), P(x)< P̄(x). This fact and condition iv imply that

P(xo)< P̄(xo) ⇒ ∀x ∈ [xo,c), P(x) is constant. (40)

We can think of P(xo)< P̄(xo) as representing P breaking contact with P̄ at some x less
than xo. Under this interpretation, equation (40) can be thought of as asserting that once
P “breaks contact” with P̄, which, by condition i, can only happen if P falls below P̄, P

“never grows” and thus stays below P̄. Now, let

x̂ = inf{x ∈ [0,c) : P(x)< P̄(x)}. (41)

Condition ii ensures x̂ < c. By (40) and (S-9) and the continuity of P, P(x) = P(x̂) if
x ∈ [x̂,c). Condition iii implies P(0) = P̄(0) (otherwise P never meets P̄). Thus, by
(S-9), condition i, and the continuity of P and P̄, P(x) = P̄(x) if x ∈ [0, x̂]. Thus, (34) is
established. The absolute continuity of P follows from the absolute continuity of P̄.

Proof of Proposition 1. If the maximum for problem (3) equals 1/2, then P itself must
be a maximizer for problem (3), since playing P against P always yields 1/2. This
implies that the necessary conditions for the optimal challenge distribution, expressed
by (8), are satisfied with F = P, i.e.,

P(x)≤ α +β x ∀ x≥ 0

dP{x≥ 0 : P(x)< α +β x}= 0.

By Lemma 8, this implies that there exists x̂ < ∞ such that

P(x) =

α +β x if 0≤ x≤ x̂

α +β x̂ if x > x̂
. (42)

The continuity of P at x = 0 implies that α = 0. The facts that α = 0 and P is a CDF in
the form of (42) imply that P is a uniform distribution.

Proof of Lemma 1. Suppose, contrary to the lemma, that there exists a point xo≥ 0 such
that at least one contestant places point mass on xo. Then symmetry implies that all the
contestants place point mass on xo. In this case, because of the random resolution
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of ties, a contestant is always better off transferring mass from xo to xo + ε , for ε >

0 sufficiently small. Such a transfer’s effect on the capacity constraint can be made
arbitrarily small by shrinking ε to zero while, for all positive ε , no matter how small,
the transfer generates a gain that is bounded below by a strictly positive number. Thus,
no one places point mass in a symmetric equilibrium, which implies that P is continuous
and P(0) = 0.

Proof of Proposition 2. By Lemma 1, P satisfies the continuity property of the “fixed
distribution” in Section 2. Thus, the distribution F played against P, together with
the two nonnegative optimal dual variables, α and β , must satisfy (8). Since dF = 0
implies that dP= 0, P satisfies the conditions in Lemma 8 with P̄(x) replaced by α+βx.
Applying Lemma 8 shows that P(x) = α +βx over its support. By Lemma 1, P(0) = 0.
Thus, α = 0. Hence, a contestant’s winning probability, expressed by (7), equals β µ .
By symmetry, contestants have the same winning probability. Thus, β µ = m/n, which
implies that β =m/(nµ). Thus, P(x) = (mx)/(nµ) over its support. Since P is bounded
above by 1, the upper bound of its support must equal (nµ)/m.

Proof of Proposition 3. Inserting (12) into (11) gives the result.

Proof of Proposition 4. Follows immediately from Proposition 3 and Definition 1.

Proof of Proposition 5. This proposition is straightforward from the following result:

Result 1 (Jones (2002), Section 2.7). The L-scale of CB(a,b) is

λ2,CB =
ab

(a+b)(a+b+1)
. (43)

The L-skewness of CB(a,b) is

τ3,CB =
a−b

a+b+2
. (44)

i Since, by Proposition 4, m
nµ

X ∼ CB(n−m,m), substituting (n−m) for a and m for
b in equation (43) and multiplying the result by (nµ)/m yield (13).

ii Since the L-skewness is scale invariant, substituting (n−m) for a and m for b in
equation (44) yields (14).

iii Follows immediately from the partial derivatives.
iv The sign of the L-skewness is determined by the sign of n−2m and the result on

right- and left-skewness follows. As shown by Jones (2002), the Complementary Beta
distribution is symmetric when the two shape parameters equal, i.e., when n−m = m

in our case. Thus, when n = 2m, the distribution is symmetric.
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Proof of Proposition 6. Since capacity is always used up in equilibrium, to show the s-
MPS result, it suffices to show the single-crossing property. Let Fm:n be the equilibrium
CDF when n contestants compete for m prizes.

First, we show that increasing n induces a s-MPS. Suppose n′ > n. Note that, Fm:n′

and Fm:n are Complementary Beta, so they are smooth and have positive derivatives on
the interior of their supports. Thus, the inverse functions, F−1

m:n′ and F−1
m:n, are smooth

and have positive derivatives over the open interval (0,1). Thus, the single-crossing
condition for a s-MPS can be expressed in terms of the quantile functions: there exists
q̂ ∈ (0,1) such that F−1

m:n′(q)−F−1
m:n(q)≥ (≤)0, when q≥ (≤)q̂. We prove this below.

By Proposition 3,

F−1
m:n′(q)−F−1

m:n(q) =
n′µ
m

n′−1

∑
i=n′−m

(
n′−1

i

)
qi(1−q)(n

′−1)−i

− nµ

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)(n−1)−i. (45)

Differentiate (45) with respect to q, apply the result that (i+1)
(n−1

i+1

)
= (n−1− i)

(n−1
i

)
to cancel the common terms, and combine the common factors. This yields

d(F−1
m:n′(q)−F−1

m:n(q))
dq

=
µqn−1−m(1−q)m−1

m
K(q), (46)

where K(q) = n′(n′−m)
(n′−1

m−1

)
qn′−n−n(n−m)

(n−1
m−1

)
. When q∈ (0,1), the sign of (46)

is determined by the sign of K. Note that K < 0 when q = 0, K > 0 when q = 1, and K

is continuous and strictly increasing for q ≥ 0. Thus, there exists q∗ ∈ (0,1) such that
K single crosses the horizontal axis from below at q = q∗. This implies, by (46), that
F−1

m:n′ −F−1
m:n is strictly decreasing for q ∈ (0,q∗) and strictly increasing for q ∈ (q∗,1).

Since F−1
m:n′(0) = F−1

m:n(0) = 0, it follows that F−1
m:n′(q)−F−1

m:n(q)< 0 for q ∈ (0,q∗]. This
result, together with the facts that F−1

m:n′(1)−F−1
m:n(1) = (n′−n)µ/m > 0 and F−1

m:n′−F−1
m:n

is continuous and strictly increasing for q ∈ (q∗,1), implies a single crossing. Thus,
Fm:n′ is a s-MPS of Fm:n.

Next, we show, by a similar argument, that decreasing m induces a s-MPS. Suppose
m′ < m. By Proposition 3,

F−1
m′:n(q)−F−1

m:n(q) =
nµ

m′
n−1

∑
i=n−m′

(
n−1

i

)
qi(1−q)(n−1)−i

− nµ

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)(n−1)−i. (47)
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Differentiate (47) with respect to q, apply the result that (i+1)
(n−1

i+1

)
= (n−1− i)

(n−1
i

)
to cancel the common terms, and combine the common factors. This yields

d(F−1
m′:n(q)−F−1

m:n(q))
dq

= nµqn−1−m(1−q)m′−1 J(q), (48)

where J(q) = n−m′
m′
( n−1

n−m′
)
qm−m′ − n−m

m

(n−1
n−m

)
(1− q)m−m′ . When q ∈ (0,1), the sign of

(48) is determined by the sign of J. Note that J < 0 when q = 0, J > 0 when q = 1,
and J is continuous and strictly increasing for q ∈ [0,1]. Thus, there exists qo ∈ (0,1)
such that J single crosses the horizontal axis from below at q = qo. This implies, by
(48), that F−1

m′:n−F−1
m:n is strictly decreasing for q ∈ (0,qo) and strictly increasing for

q ∈ (qo,1). Since F−1
m′:n(0) = F−1

m:n(0) = 0, it follows that F−1
m′:n(q)−F−1

m:n(q)< 0 for q ∈
(0,qo]. This result, together with the facts that F−1

m′:n(1)−F−1
m:n(1)= nµ(1/m′−1/m)> 0

and F−1
m′:n−F−1

m:n is continuous and strictly increasing for q ∈ (qo,1), implies a single
crossing. Thus, Fm′:n is a s-MPS of Fm:n.

Proof of Proposition 7. i and ii. Follows immediately from Propositions 3 and 5.
iii. Multiply contest size by ρ > 1 such that ρn and ρm are both integers. Let

Fm:n and Fρm:ρn be the equilibrium distributions before and after an increase in contest
size, respectively. Similar to the proof of Proposition 6, we prove the s-MPS result by
showing that Fρm:ρn and Fm:n satisfy a single-crossing property. Consider the horizontal
difference between the two distributions, expressed as

F−1
ρm:ρn(q)−F−1

m:n(q) =
nµ

m

ρn−1

∑
i=ρn−ρm

(
ρn−1

i

)
qi(1−q)(ρn−1)−i

− nµ

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)(n−1)−i. (49)

Differentiate equation (49) with respect to q, apply the results that (i + 1)
(

ρn−1
i+1

)
=

(ρn− 1− i)
(

ρn−1
i

)
and (i+ 1)

(n−1
i+1

)
= (n− 1− i)

(n−1
i

)
to cancel the common terms,

and combine the common factors. This yields

d(F−1
ρm:ρn(q)−F−1

m:n(q))

dq
=

n(n−m)µqn−m−1(1−q)m−1

m
H(q), (50)

where H(q) =
(

ρn−1
ρm−1

)
ρq(ρ−1)(n−m)(1−q)(ρ−1)m−

(n−1
m−1

)
. When q ∈ (0,1), the sign of

(50) is determined by the sign of H. Differentiating H with respect to q shows that H

is maximized at q = (n−m)/n, strictly increasing for q ∈ (0, (n−m)/n), and strictly
decreasing for q ∈ ((n−m)/n, 1). Thus, H has an inverse-U shape on its domain.

48



This implies, since H(0) < 0 and H(1) < 0, that, if H is strictly positive somewhere
on (0,1), H must cross the horizontal axis twice on its domain. We claim that H is
strictly positive somewhere on its domain, which we prove later. Thus, there must exist
two distinct points q1 and q2, where 0 < q1 < (n−m)/n < q2 < 1, such that H(q)< 0
for q ∈ (0,q1)

⋃
(q2,1) and H(q) > 0 for q ∈ (q1,q2). This implies that F−1

ρm:ρn−F−1
m:n

is strictly decreasing for q ∈ (0,q1), strictly increasing for q ∈ (q1,q2), and strictly
decreasing again for q ∈ (q2,1). Since F−1

ρm:ρn−F−1
m:n equals 0 for q = 0 and for q = 1,

it follows that F−1
ρm:ρn−F−1

m:n is strictly negative for q ∈ (0,q1], strictly positive for q ∈
[q2,1), and equals zero at a unique q∗ ∈ (q1,q2), implying a single crossing.

What remains to show is the claim we made that H must be strictly positive some-
where on its domain. Suppose not; so H is weakly negative everywhere. By (50), this
implies, since it is obvious that H cannot equal 0 everywhere, the horizontal difference,
F−1

ρm:ρn−F−1
m:n, when q = 1 must be strictly less than that when q = 0, which contra-

dicts that the horizontal difference is 0 for both q = 0 and q = 1. This contradiction
establishes our claim and completes the proof.

Proof of Proposition 8. Define Φ(w,n,m) = ∑
n−1
i=n−m

(n−1
i

)
wi(1−w)n−1−i, for all w ∈

[0,1]. Note that Φ(w,n,m) is the distribution of the n−m : n− 1 order statistic for a
uniform distribution. Let

(
(n j,m j)

)
be a sequence of natural numbers such that for

all j, m j = ρn j, where 0 < ρ < 1. Then Φ(w,n j,m j) is the distribution of the (1−
ρ)n j : n j−1 order statistic for a uniform distribution. The weak convergence of order
statistics to their associated quantiles (see Lemma 1.2.9 in Reiss (1980)) implies that the
sequence of distribution functions

(
Φ(·,n j,m j)

)
converges weakly to the distribution

function of a degenerate random variable concentrated at 1−ρ . Thus,

lim
j→∞

Φ(w,n j,m j) =

0 if w < 1−ρ

1 if w > 1−ρ

, ∀ w ∈ [0,1]. (51)

Let F j
Z be a sequence of equilibrium distributions for the normalized performance levels,

Z̃ = X̃/(µ/ρ). Using the normalized performance levels, we can express the equilib-
rium condition given by Proposition 3 as

z = Φ(F j
Z (z),n j,m j). (52)

Suppose the proposition is incorrect, then equation (15) is not satisfied. Thus, some
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sequence
(
F j

Z
)

does not converge to the distribution

F∞
Z (z) =

1−ρ if z < 1

1 if z≥ 1
.

This implies, passing to a subsequence if necessary, using Helly’s selection theorem
(See Billingsley (1985) Theorem 25.9), that there exists a limit distribution for the se-
quence, F ′Z unequal to F∞

Z . This implies that, at some continuity point of F ′Z , z′ ∈ (0,1),

F j
Z (z
′)→ F ′Z(z

′) 6= 1−ρ.

Exploiting the continuity of Φ, the fact that z′ is a continuity point of F ′Z , (52), and (51),
we can take the limit of (52). This yields

z′ =

0 if F ′Z(z
′)< 1−ρ

1 if F ′Z(z
′)> 1−ρ

. (53)

Since, by hypothesis, the left hand side of (53), z′, lies in the interval (0, 1) and the
function represented by the right hand side of (53) only takes on the values 0 and 1,
(53) cannot be satisfied. This contradiction establishes the result.

Proof of Lemma 2. Suppose there exists a point xo ≥ 0 such that at least one type-t
contestant places point mass on it. Then symmetry implies that all type-t contestants
place point mass on xo. In this case, by the same argument as in the proof of Lemma 1,
a type-t contestant is always better off transferring mass from xo to xo + ε , for ε > 0
sufficiently small. The contradiction implies that no type places point mass. Thus, P

must be continuous and, hence, P(0) = 0.

Proof of Proposition 9. Note that ψ , defined by (18), is an increasing concave function
defined over the nonnegative real line. Since P is bounded above by the two support
lines, P(x)≤ψ(x) for all x≥ 0. Since the support of P is contained by the support of the
best replies of types W and S, the support of P is contained within {x≥ 0 : P(x)=ψ(x)}.
Thus, the conditions of Lemma 8 are satisfied and the result follows.

Proof of Corollary 1. See the discussion right before Corollary 1 in the main text.

Proof of Corollary 2. Follows immediately from Proposition 9 and the fact that the sup-
port of P equals the union of the supports of two types’ equilibrium distributions.

Proof of Lemma 3. See the discussion right before Lemma 3 in the main text.
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Proof of Lemma 4. First, we show that αS ≥ αW by way of contradiction. Suppose that
αS < αW . Then we must have βS > βW , since otherwise, by Lemma 3, SuppW would be
an empty set. However, if αS < αW and βS > βW , Lemma 3 implies that all the points in
SuppS are weakly smaller than all the points in SuppW , which contradicts that µS > µW .
Thus, we must have αS ≥ αW and, by Proposition 9 and the fact that P(0) = 0, we must
have αW = 0. Thus, αS ≥ αW = 0.

The above analysis implies that there are only two cases: either (i) αS = αW = 0 or
(ii) αS > αW = 0. In case (i), we must have βS = βW , since otherwise, by Lemma 3,
SuppS and SuppW cannot both contain strictly positive values of x. In case (ii), we must
have βS < βW , since otherwise, by Lemma 3, SuppS would be an empty set. Finally,
note that no strong contestant has sufficient capacity to guarantee winning and, hence,
βS, which measures the marginal value of S’s capacity, must be strictly positive.

Proof of Lemma 5. For the concession configuration to sustain a symmetric equilib-
rium, W ’s payoff, pC

W , must be at least the payoff from playing the alternative strategy
of placing all the mass on 0 with probability 1−µW/µS and mimicking S’s strategy with
probability µW/µS. By playing this alternative strategy, W ’s payoff is pC

S µW/µS. Thus,
the condition can be expressed as pC

W ≥ pC
S µW/µS, which, given that µW/µS = pG

W/pG
S

and θ pC
S +(1−θ)pC

W = θ pG
S +(1−θ)pG

W = m/n, is equivalent to pC
W ≥ pG

W .
In the challenge configuration, W ’s payoff, pG

W , includes the probability of outper-
forming S. Thus, for this configuration to sustain a symmetric equilibrium, pG

W must be
strictly greater than pC

W . The latter is W ’s payoff when W concedes to S.29

Proof of Proposition 10. With probability
(n

i

)
θ i(1−θ)n−1−i, exactly i out of n contes-

tants are strong, in which case selection efficiency is maximized when the number of
selected strong contestants equals min [i, m]. Summing up the expected numbers from
i = 0 to i = n and dividing the sum by m yield equation (28). The rest of the proof is
clear from equation (27) and the definition of ∆Π.

Proof of Corollary 3. i. The result follows from (29), (30), and the facts that Π∗ is
constant in r whereas θr

(1−θ)+θr is strictly increasing in r for all r > 1.
ii. Since ∑

n
i=0
(n

i

)
θ i(1−θ)n−i = 1, Π∗, expressed in (28), can be rewritten as

Π
∗ = 1−

m−1

∑
i=0

m− i
m

(
n
i

)
θ

i(1−θ)n−i. (54)

29Given the condition for a concession equilibrium presented by Lemma 5, the construction of a con-
cession equilibrium is obvious. Given the condition for a challenge equilibrium presented by Lemma 5,
a challenge equilibrium can be constructed by following the procedure illustrated by the example in
Section 4.2.
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Differentiate (54) with respect to θ , apply the result that i
(n

i

)
= (n− i+ 1)

( n
i−1

)
to

cancel the common terms, and combine the common factors. This yields

∂Π∗

∂θ
=

m−1

∑
i=0

n− i
m

(
n
i

)
θ

i(1−θ)n−i−1,

which is positive and goes to 0 when θ → 1. Note that

∂

(
θr

(1−θ)+θr

)
∂θ

=
r

((1−θ)+θr)2 ,

which is positive and goes to 1/r when θ → 1. Thus, both Π∗ and θr
(1−θ)+θr are strictly

increasing in θ and the rate of increase is smaller for Π∗ than for θr
(1−θ)+θr when θ → 1.

These results imply two facts: (1) Π, given by (29), must be strictly increasing in θ ,
and (2) since, when θ = 1, Π∗ = θr

(1−θ)+θr = 1, we must have, for θ sufficiently close
to 1, Π∗ > θr

(1−θ)+θr and thus ∆Π > 0, which implies, since ∆Π is continuous in θ and
∆Π = 0 for both θ = 0 and θ = 1, that ∆Π must be nonmonotonic in θ .

iii. For any realization of contestant types, adding an additional contestant will never
reduce but sometimes increase the number of strong contestants. Thus, increasing the
number of contestants will strictly increase the expected number of strong contestants,
which implies, since Π∗ requires giving strong contestants absolute priority, that Π∗

must be strictly increasing in n. The result then follows from (29), (30), and the fact
that θr

(1−θ)+θr is constant in n.
iv. It is clear from (28) that Π∗ is strictly decreasing in m. The result then follows

from (29), (30), and the fact that θr
(1−θ)+θr is constant in m.

v. First, we show that increasing contest size strictly increases Π∗. Let k be the
scale factor, where k > 1 is an integer. After a k-fold scaling of the game, the contest
involves k bunches of contestants, with each bunch containing n contestants. Let Sk

i be
the number of strong contestants in the ith bunch, for all i ∈ {1, · · · ,k}. Let

S̄k =
1
k

k

∑
i=1

Sk
i

be the average number of strong contestants per bunch produced by a k-fold scaling of
the game. Note that Π∗ is strictly increasing in k if and only if k 7→ E

[
min[S̄k, m]

]
is

strictly increasing.
By the concavity of x 7→ min[x, m] and the conditional form of Jensen’s inequality,
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the following inequality holds with probability 1:

E
[
min[S̄k−1, m]

∣∣∣S̄k
]
≤min

[
E[S̄k−1

∣∣∣S̄k], m
]
.

Since E[S̄k−1
∣∣∣S̄k] = S̄k, we know that, with probability 1,

min[S̄k, m]≥ E
[
min[S̄k−1, m]

∣∣∣S̄k
]
. (55)

Next, note that
P
{

min[S̄k, m]> E
[
min[S̄k−1, m]

∣∣∣S̄k
]}

> 0. (56)

To see this, consider the event where

Sk
1 = m+1, Sk

2 = m−1, and Sk
i = m ∀ i 6= 1, 2.

Since 1 ≤ m < n and since contestant types are independent, this event has positive
probability. When this event occurs,

S̄k = m and P
{

S̄k−1 < m
∣∣∣S̄k
}
> 0.

Thus, when this event occurs,

min[S̄k, m] = m > E
[
min[S̄k−1, m]

∣∣∣S̄k
]
. (57)

Thus, (57) implies (56). By taking the unconditional expectation of (55) and noting
(56), we have

E
[
min[S̄k, m]

]
> E

[
min[S̄k−1, m]

]
.

Thus, Π∗ is strictly increasing in k.
It is clear by equations (29) and (30) that both Π and ∆Π are weakly increasing in

Π∗ and constant in θr
(1−θ)+θr . Thus, by equations (29) and (30) and the result that Π∗ is

increasing in k, both Π and ∆Π must be weakly increasing in k.

Proof of Lemma 6. Applying the argument in the proof of Lemma 2 to all x ∈ [0, x̄)

establishes the result.

Proof of Proposition 11. See the discussion right before Proposition 11 in the main text.

Proof of Proposition 12. First, we show that the optimal dual variables, αt and βt , for
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t ∈ {S,W}, are constant in x̄ ∈ [µS,∞).30

Note that W ’s payoff, expressed by αW + βW µW , is, by Proposition 11, constant
in x̄ ∈ [µS,∞). Since, by Lemma 4, αW = 0, αW and βW must both be contestant in
x̄ ∈ [µS,∞). Now consider αS and βS. Since, as argued in the proof of Proposition 11,
a scoring cap x̄ ∈ [µS,∞) does not affect the equilibrium configuration, to show that αS

and βS are constant in x̄ ∈ [µS,∞), it suffices to show that the configuration-conditioned
multipliers, αS and βS, are constant in x̄ ∈ [µS,∞). Note that, in the challenge configu-
ration, αS = αW and βS = βW . In this case, since αW and βW are constant in x̄ ∈ [µS,∞),
so are αS and βS. In the concession configuration, αS and βS are determined by the
following two equations: (1) αS +βSµS = pC

S , where pC
S is S’s payoff if S has absolute

priority, and (2) αS + βSx̌ = p̌, where x̌ is the intersection of the two support lines in
the concession configuration, determined by αS +βSx̌ = αW +βW x̌, and p̌ is a contes-
tant’s probability of winning if he concedes to strong contestants but outperforms all
weak ones. Since x̄ ∈ [µS,∞) does not affect pC

S , p̌, αW , or βW , it does not affect ei-
ther equation. Thus, αS and βS must both be constant in x̄ ∈ [µS,∞) in the concession
configuration.

The above analysis implies that the concave lower envelope, ψ , defined by (18), is
constant in x̄ ∈ [µS,∞). Thus, when the scoring cap is not binding, i.e., when x̄ ≥ x̂,
where x̂ is defined in Proposition 9, equilibrium distributions are unaffected.

When the scoring cap is binding, i.e., when x̄ ∈ [µS, x̂), since P is bounded above
by ψ and since ψ is strictly increasing, we must have P(x̄)≤ ψ(x̄)< ψ(x̂) = 1, which
implies point mass on x = x̄, and, by the random resolution of ties, P is discontinuous
at x = x̄. Moreover, since probability weight is placed only on points where P meets ψ ,
we must have P(x̄) = ψ(x̄). By Lemma 6, P is continuous on [0, x̄). Applying Lemma 8
over the interval [0, x̄) and using the result that, given x̄ ∈ [µS, x̂), P(x̄) = ψ(x̄) yield

P(x) =


ψ(x) if x ∈ [0, x̃]

ψ(x̃) if x ∈ [x̃, x̄)

ψ(x̄) if x = x̄

, (58)

where x̃ ∈ (0, x̄) is a constant and x̄ ∈ [µS, x̂). Thus, imposing a scoring cap x̄ ∈ [µS, x̂)

induces each contestant to transfer the mass over (x̃, x̂] to the point mass on x̄, leaving
the mean of the distribution and the distribution over [0, x̃] unchanged. Such a change
in distribution represents a simple mean-preserving contraction (s-MPC).

30When x̄ = µS, the optimal dual variables are not unique. However, S’s strategy is unique: S places
all the mass on µS. Thus, without loss of generality, we redefine the values of αS and βS when x̄ = µS by
their limiting values when x̄ ↓ µS.
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Moreover, given that x̄ ∈ [µS, x̂), decreasing x̄ decreases x̃. To see this, note that,
given x̄ ≥ µS, ψ is fixed and strictly increasing. Thus, decreasing x̄, provided that x̄ is
still weakly greater than µS, decreases ψ(x̄) and, by (58), decreases P(x̄). This implies
that, when the scoring cap becomes tighter, each contestant places more point mass on
the cap. In this case, limx↑x̄ P(x) must decrease. Thus, by (58), ψ(x̃) must decrease.
Since, when x̄≥ µS, ψ is fixed and strictly increasing, x̃ must decrease. Such a change
in P implies a s-MPC of contestant performance.

The proposition follows from the s-MPC result and Diamond and Stiglitz (1974)
that a s-MPC increases the utility of a risk-averse expected utility maximizer.

Proof of Proposition 13. See the discussion right before Proposition 13 in the main text.

Proof of Proposition 14. If, without a penalty trigger, W concedes to S, then as implied
by Proposition 13, after a penalty trigger, x > 0, is imposed, W will still concede to S.
Let P∗ and P be the probability of winning function with and without a penalty trigger,
respectively. For t ∈ {S,W}, let Supp∗t and Suppt be the support of type-t’s strategy
with and without a penalty trigger, respectively, and let x̄∗t and x̄t be the upper bound of
the support of type-t’s strategy with and without a penalty trigger, respectively.

Note that the following three conditions must hold:
i. P∗(x̄∗W ) = P(x̄W ),

ii. x̄∗W < x̄W ,
iii. and x̄∗S > x̄S.

The reason for (i) is that, in the concession configuration, both P(x̄W ) and P∗(x̄∗W )

equal the probability of winning if a contestant concedes to strong contestants but out-
performs all weak ones. Condition (i) implies (ii), since otherwise, given that P and
P∗ are straight lines over SuppW and Supp∗W , respectively, and given that S places no
weight over W ’s support in concession equilibria, W ’s strategy with a penalty trigger
would first-order stochastically dominate that without a penalty trigger, a contradiction.
Condition (ii) further implies (iii), since otherwise, given that P and P∗ are straight
lines over SuppS and Supp∗S, respectively, and given that W places no weight over S’s
support in concession equilibria, S’s strategy with a penalty trigger would be first-order
stochastically dominated by that without a penalty trigger, a contradiction.

Since, in concession equilibria, the lower bound of S’s strategy meets the upper
bound of W ’s, conditions (i), (ii), and (iii) imply that W ’s strategy with a penalty trigger
single crosses that without a penalty trigger from below and that S’s strategy with a
penalty trigger single crosses that without a penalty trigger from above, and the propo-
sition follows from these single-crossing results.
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Proof of Proposition 15. Let k be the number of local contests and ni and mi the number
of contestants and the number of prizes in the ith local contest, respectively, such that

∑
k
i=1 ni = n, ∑

k
i=1 mi = m, and ni > mi ≥ 1 for all i∈ {1, · · · ,k}. Let Πg and Πl be actual

selection efficiency of the grand and of the local contest structure, respectively.
First, we show that Πg ≥Πl and thus localizing a contest never improves efficiency.

If the grand contest has concession equilibria, its selection is efficient and thus Πg≥Πl .
If the grand contest has challenge equilibria, Πg = θr

(1−θ)+θr . By Proposition 10, the
efficiency of every local contest is bounded above by θr

(1−θ)+θr . Thus, Πl ≤ θr
(1−θ)+θr =

Πg. Therefore, Πg≥Πl regardless of the equilibrium configuration of the grand contest.
Next, we prove that having challenge equilibria in every local contest is sufficient

for Πl = Πg. If every local contest has challenge equilibria, Πl = θr
(1−θ)+θr . Thus, by

Proposition 10, Πg ≤ θr
(1−θ)+θr = Πl , which implies, given the result we proved above

that Πg ≥Πl , that Πg = Πl .
Finally, we prove that having challenge equilibria in every local contest is necessary

for Πl = Πg. If there exists at least one local contest with concession equilibria, we
must have Πl < θr

(1−θ)+θr . In this case, if the grand contest has challenge equilibria, we
must have Πg = θr

(1−θ)+θr > Πl; if the grand contest has concession equilibria, Πg =

Π∗(n,m), in which case Πg > Πl follows from the following result:

Π
∗(n,m)>

k

∑
i=1

(mi

m

)
Π
∗(ni,mi)≥

k

∑
i=1

(mi

m

)
min

[
θr

(1−θ)+θr
, Π
∗(ni,mi)

]
= Π

l.

(59)
What remains to show is (59). In (59), the last equality comes from Proposition 10, and
the second inequality is obvious. To prove the first inequality, it suffices to show that
a local contest mechanism is not efficient even if all the local contests have concession
equilibria. This result holds for the following reason. Since m < n, under a local contest
structure, there must exist a local contest, say the jth, in which m j < n j. Since every
local contest has at least one prize, we must have m j < m. With positive probability,
exactly m j + 1 out of n contestants are strong. In this case, since m j + 1 ≤ m, an ef-
ficient selection requires selecting all the m j + 1 strong contestants. However, under a
local contest structure, with positive probability, the m j + 1 strong contestants are all
assigned to the jth local contest, in which case it is impossible to select all of them.
This establishes the first inequality in (59) and completes the proof of necessity.

Proof of Proposition 16. Let P be a contestant’s probability of winning function. A
contestant’s problem is to choose a distribution, F , with support included in [0, T ∗],
subject to the capacity constraint, to maximize

∫ T ∗
0 k erxP(x)dF(x), where k = e−rT ∗Vc

is a constant.
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By the similar argument developed in Section 2.1, it is clear that the optimal mea-
sure, dF , and the associated dual variables, α and β , must satisfy the following:

k erxP(x)≤ α +β x ∀ x ∈ [0, T ∗],

dF{x ∈ [0,T ∗] : k erxP(x)< α +β x}= 0.
(60)

Following the proof of Lemma 1, it is evident that, in equilibrium, no one places point
mass on [0, T ∗). Thus, when there are just two contestants, in a symmetric equilibrium,

P(x) = F(x) ∀ x ∈ [0, T ∗). (61)

To derive the equilibrium F , we first establish the following lemma.

Lemma 9. If Supp{F} represents the support of the equilibrium distribution, then

Supp{F}\{T ∗} is an interval containing 0, and F is absolutely continuous on [0,T ∗).

Proof. The function P̄ : [0,T ∗) 7→ [0,∞), defined by P̄ = 1
k e−rx (α +βx) is absolutely

continuous. By equations (60) and (61), with respect to P̄, F satisfies conditions (i) and
(iv) of Lemma 8 on [0,T ∗). Moreover, since no one places point mass on [0,T ∗), F must
be continuous on [0,T ∗) and thus the result follows from a straightforward modification
of the proof of Lemma 8.

Next, we show that α = 0 and β > 0.

Lemma 10. The optimal dual variables satisfy: α = 0 and β > 0.

Proof. Since β measures the marginal value of capacity and since no contestant has
sufficient capacity to guarantee winning, β must be strictly positive. By Lemma 9,
F(0) = α . Since no one places point mass on 0, F(0) = 0. Thus, α = 0.

Lemmas 9 and 10 imply that there are only two candidate equilibrium configura-
tions:

A. Supp{F} = [0, x̂], where x̂ ≤ T ∗, in which case F has no point mass and, hence,
P = F everywhere;

B. Supp{F}= [0, x′]
⋃
{T ∗}, where x′< T ∗, in which case, F has point mass on T ∗ but

not elsewhere and, hence, P(x) = F(x) for all x < T ∗ and, by the random resolution
of ties, P(T ∗) = (1+F(x′))/2.

We first construct a symmetric equilibrium according to configuration (A). In (A),
the payoff function must meet the support line everywhere over [0, x̂]. Thus, kerxP(x) =
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βx for all x ∈ [0, x̂], which implies, since P = F everywhere in (A), that kerxF(x) = βx

for all x ∈ [0, x̂]. Since F(x̂) = 1 in (A), it must be that

β = k erx̂/ x̂. (62)

Thus, F must equal (32), which sustains an equilibrium if and only if the following
conditions are satisfied:

(A.i) F is nondecreasing on the nonnegative real line;

(A.ii) the mean of F equals µ;

(A.iii) T ∗ ≥ x̂, where x̂ is the upper bound of the support of F ;

(A.iv) the payoff function, k erxP(x), is bounded above by the support line everywhere
on [0, T ∗].

Differentiating (32) with respect to x shows that F ′(x) ≥ 0 if and only if either
0≤ x≤min[x̂, 1/r] or x≥ x̂. Thus, (A.i) holds if and only if x̂≤ 1/r.

Note that the mean of F is expressed by the left hand side of (31), yielded from (32)
by integrating x over F . Thus, (A.ii) holds if and only if x̂ satisfies (31).

Since the payoff function meets the support line on [0, x̂], (A.iv) is satisfied if and
only if the payoff function is bounded above by the support line on (x̂, T ∗]. Note that,
in configuration (A), P(x) = 1 for all x ≥ x̂, so the payoff function when x ≥ x̂ is kerx.
Since this function is convex and increasing, it is bounded above by the support line on
(x̂, T ∗] if and only if it is bounded above by the support line at T ∗, i.e., if and only if

k erT ∗ ≤ α +β T ∗, (63)

where β is given by (62) and, by Lemma 10, α = 0. Thus, (63) is equivalent to

erT ∗

T ∗
≤ erx̂

x̂
. (64)

Note that, on the positive real line, erx/x is a continuous function that is strictly decreas-
ing on (0, 1/r) and strictly increasing on (1/r, ∞). Thus, x̂ ≤ T ∗ is implied by x̂ ≤ 1/r

and (64). This means that (A.iii) is implied by (A.i) and (A.iv). Rearranging (64) yields
that x̂≤ T ∗ er(x̂−T ∗).

The above analysis shows that configuration (A) sustains an equilibrium if and only
if x̂ satisfies (31) and x̂ ≤min

[
T ∗ er(x̂−T ∗), 1/r

]
. If any of these conditions is violated,

a symmetric equilibrium must have configuration (B), which we examine below.
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In (B), the payoff function must meet the support line at x = T ∗ and everywhere
over [0, x′]. Thus, kerxP(x) = βx for all x ∈ [0,x′] and for x = T ∗. This implies, given
P(T ∗) = (1+F(x′))/2 in (B), that

β =
kerT ∗ (1+F(x′))

2T ∗
,

and further implies, given P(x) = F(x) for all x ∈ [0,T ∗) in (B), that

F(x) =
(1+F(x′))x

2T ∗
er(T ∗−x) ∀ x ∈ [0,x′]. (65)

Evaluating (65) at x = x′ establishes the relation between F(x′) and x′, expressed as

F(x′) =
x′

2T ∗er(x′−T ∗)− x′
. (66)

Substituting (66) into (65) and applying the results that, in configuration (B), F(x) =

F(x′) for all x ∈ [x′, T ∗) and F(T ∗) = 1 yield the expression of F given by (33), with x′

chosen to make the capacity constraint bind.

Proof of Lemma 7. We first present a result in Ankirchner, Hobson, and Strack (2014).
Then, based on this result, we give two corollaries that we will use to prove this lemma
and the next proposition.

Result 2 (Ankirchner, Hobson, and Strack (2014), Theorem 3, Proposition 4, and
Proposition 5). Consider the time-homogeneous local martingale diffusion X, where

X solves

dXt = η(Xt)dWt , with X0 = µ; (67)

here Wt is a Wiener process, µ ∈ R+, and η : R 7→ R+ is Borel-measurable. Define

q(x) =
∫ x

µ

dy
∫ y

µ

2
η2(z)

dz. (68)

Suppose the target distribution F satisfies
∫

xdF(x) = µ . There exists an integrable

stopping time that induces F by stopping X if and only if q is integrable with respect to

F. In this case, any minimal and integrable stopping time τ satisfies

E[τ] =
∫

q(x)dF(x).

Moreover, if F is absolutely continuous with a compact support and both its density

and η are bounded away from zero on its support, then there exists a bounded time
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embedding of F into X.

The following two corollaries are straightforward from Result 2.

Corollary 4. Suppose X is a Brownian motion absorbed at zero, i.e., X is given by (67)
with η(Xt) = δ > 0 if Xt > 0 and η(Xt) = 0 if Xt = 0. Suppose F satisfies

∫
xdF(x) = µ .

There exists an integrable stopping time that induces F by stopping X if and only if F

has its support on the nonnegative real line and x2 is integrable with respect to F. In

this case, any minimal and integrable stopping time τ satisfies

E[τ] =
∫

(x−µ)2

δ 2 dF(x).

Proof. Given that η(Xt) = δ if Xt > 0 and η(Xt) = 0 if Xt = 0, function q, expressed
by (68), satisfies q(x) = (x−µ)2

δ 2 if x ≥ 0 and q(x) = +∞ if x < 0. The corollary then
follows immediately from Result 2.

Corollary 5. Suppose X is a geometric Brownian motion, i.e., X is given by (67) with

η(Xt) = υXt , where υ > 0. Suppose F satisfies
∫

xdF(x) = µ . There exists an integrable

stopping time that induces F by stopping X if and only if F has its support on the

nonnegative real line and ln(x) is integrable with respect to F. In this case, any minimal

and integrable stopping time τ satisfies

E[τ] =−
∫ 2

υ2 (ln(x)− ln µ)dF(x).

Proof. Given that η(Xt)=υXt , function q, expressed by (68), satisfies q(x)=− 2
υ2 (ln(x)−

ln µ− x
µ
+1). The corollary then follows immediately from Result 2.

By Corollaries 4 and 5, Lemma 7 follows immediately from the convexity of x 7→
1

δ 2 (x− µ)2 and of x 7→ − 2
υ2 ln(x) and the fact that a mean-preserving spread increases

the expected value of a convex function (this is analogous to the well-known result that
a mean-preserving spread increases the expected utility of an individual with a convex
utility function).

Proof of Proposition 17. Given Propositions 6 and 7 and Lemma 7, to show Proposi-
tion 17, it suffices to show the existence of an integrable stopping time. By Corollaries 4
and 5, this is equivalent to showing that both x2 and ln(x) are integrable with respect
to the equilibrium distribution presented in Proposition 3. Since this distribution is
Complementary Beta, which has a finite variance, integrability condition holds for x2.
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Now we show that integrability condition also holds for ln(x). Integration by parts
yields ∫

ln(x)dF(x) = ln(x)F(x)|
nµ

m
0 −

∫ nµ

m

0

1
x

F(x)dx.

To show that the left hand side of the above equation is finite, it suffices to show that,
on the right hand side,

i. limx→0 | ln(x)F(x)| is finite,

ii. and
∫ nµ

m
0 |

1
x F(x)|dx is finite.

Note that the left hand side of the equation in Proposition 3 is weakly greater than
F(x)n−1. Thus, F(x)n−1 must be weakly less than the right hand side of that equation,
which implies that

0≤ F(x)≤ kx
1

n−1 ∀x ∈ [0,
nµ

m
] , (69)

where k =
(

m
nµ

) 1
n−1 is a constant. By (69), limx→0 | ln(x)F(x)| is weakly less than

limx→0 | ln(x)kx
1

n−1 |, which, by L’Hôpital’s rule, equals limx→0 |− k
n−1x

1
n−1 | = 0. Thus,

(i) holds. By (69),
∫ nµ

m
0 |

1
x F(x)|dx is weakly less than

∫ nµ

m
0 |

k
xx

1
n−1 |dx, which equals k(n−

1)
(nµ

m

) 1
n−1 , a finite constant. Thus, (ii) also holds. Hence, integrability condition holds

for ln(x), which completes the proof.
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Abstract

This document provides a demonstration that the symmetric Nash equilibrium

for the certain-capacity contest game studied in Section 3 is, in fact, the unique

Nash equilibrium.

In the body of the paper, we restricted our attention to symmetric equilibria. Under the
assumption of symmetry, it was fairly easy to rule out equilibria in which contestants
choose discontinuous performance distributions. In this online appendix, we consider
asymmetric equilibria. Our goal is to show that no asymmetric equilibria exist for the
contest game studied in Section 3. This result will show that the unique symmetric
equilibrium identified in Proposition 3 is, in fact, the unique Nash equilibrium.

S.1 Preliminary results

Absent the assumption of symmetry, discontinuous performance distributions are more
difficult to dismiss, and thus we need to develop a few more preliminary results which,
although unsurprising, are somewhat tedious to demonstrate. We first need to define
the probability of winning function faced by a contestant, say contestant i, when some
other contestants use discontinuous performance distributions that place positive mass
on specific performance levels. The complication introduced by such performance dis-
tributions is the possibility of ties: two or more contestants may obtain the same perfor-
mance with positive probability. We will show that such discontinuities may lead to the
non-existence of best replies but that, when best replies exist, they satisfy exactly the
same characterizations as developed in Section 2.1.
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To take into account the issue of ties, we first define a minimal prize-worthy perfor-

mance level for a contest with n contestants and m prizes. For a given vector of perfor-
mance levels, X = (x1, . . .xn), and number of prizes, m, the minimal prize-worthy per-
formance faced by i given the performance levels of the other contestants, X−i, equals

mpw(X−i) = min
j 6=i
{x j : #({k 6= i : xk > x j})< m}.

A prize-worthy performance level for i given X−i is any performance level at least equal
to the minimal prize-worthy performance level. If i’s performance level exactly equals
mpw(X−i), then more than m contestants would have prize-worthy performance. Thus,
if prizes were awarded to all prize-worthy performances, more than m prizes would
be offered. To keep the number of prizes equal to m, prizes offered to “marginal con-
testants,” those contestants who obtained the minimal prize-worthy performance level,
have to be rationed. We assume that the rationing rule allocates the prizes among the
marginal contestants in such a way that each has a positive probability of receiving the
prize, which implies, because of the surplus of marginal contestants relative to prizes,
that no rationed marginal contestant receives a price with certainty.1

Given that contestant i’s competitors submit random performance levels, X̃−i, the
minimal prize-worthy performance level for i is also a random variable, mpw(X̃−i). Let
Pi be the CDF of mpw(X̃−i), i.e.,

Pi(x) = Prob[mpw(X̃−i)≤ x]. (S-1)

Note that Pi is the probability of winning function for i ignoring rationing. Because
Pi is a CDF, it is nonnegative, nondecreasing, right continuous, and bounded above by
1. Because of rationing, contestant i’s probability of winning, given his performance
level xi, can be lower than Pi(xi). Contestant i might have performance exactly equal
to the realization of mpw(X̃−i). This event can only occur with positive probability at
points on which the distribution of mpw(X̃−i) assigns positive probability. These are
the discontinuity points of Pi. Let D(Pi) denote these discontinuity points. Note that
D(Pi) is a countable set. Let Oi be the actual probability of winning function for i. Then
we have

Oi(xi) = Pi(xi)− `i(xi),

where `i is the function of rationing penalty, i.e., the reduction in the probability of
winning in the case of prize rationing, and `i satisfies `i(xi) ∈ (0,Pi(xi)−Pi(x−i )) for all

1It is clear that the random tie-breaking rule assumed in the main body of the paper satisfies such a
condition.
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xi ∈ D(Pi) and `i(xi) = 0 for all xi 6∈ D(Pi).
Because Pi is right continuous and nondecreasing and thus upper semi-continuous,

the map dFi 7→
∫

Pi dFi is upper semi-continuous. However, Oi is generally not upper
semi-continuous. Hence, under Oi, the problem of choosing the optimal performance
distribution may not have a solution. However, the following theorem and its corollary
show that, if a best reply exists for contestant i to Oi, then this best reply is also a best
reply to Pi. Thus, when a best-reply distribution exists, this distribution satisfies all
of the characterizations of optimal performance distributions developed in Section 2.1.
The exact rule for rationing prizes under ties has no effect on the character of the best
reply, which is always entirely determined by the CDF Pi. The intuition behind this
result is that there are only a countable number of discontinuities in Oi. Placing weight
on any of them triggers a loss from rationing. Since the complement of a countable
subset of the positive real line is dense, contestant i can avoid the discontinuity points
and approach the payoff under Pi to an arbitrary degree of accuracy. The only effect of
the rationing penalty, `i, is that it may block the payoff of the sequence of distributions
that approach the payoff under Pi from equalling the payoff of the limit distribution.
This generates a discontinuity, which, when it occurs, implies that no best reply exists
for contestant i. This intuition is given by Figure S.1. The key insight from the figure
is that the upper support lines are the same for Oi, the actual probability of winning
function under the rationing rule, and Pi, the probability of winning function absent
rationing. However, under Oi, the supremum of i’s payoff is never attained. Thus, no
best reply exists for contestant i under Oi.
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Figure S-1: An illustration of the effect of discontinuity
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In a Nash equilibrium, by definition, each contestant has a best reply to the distri-
butions chosen by the other contestants. Thus, when characterizing Nash equilibria of
the contest game, we can assume without loss of generality that contestant i plays best
replies to the CDF Pi rather than to the actual probability of winning function Oi. Al-
though these assertions are by no means surprising, formally establishing them is fairly
tedious. So for the details of the proof, we refer the reader to Section S.3. The key
result is presented in the following theorem.

Theorem S.1. Let P be any cumulative probability distribution function. Let D(P) be

the set of its discontinuity points. Let C be a set of measures on the nonnegative real

line such that, for all dF ∈ C , dF satisfies∫
∞

0
xdF(x)≤ µ and

∫
∞

0
dF(x)≤ 1 , where µ > 0.

Define O by

O(x) = P(x)− `(x),

where `(x) ∈ (0,P(x)−P(x−)) for all x ∈D(P) and `(x) = 0 for all x 6∈D(P). Then we

must have

sup
dF∈C

∫
∞

0
O(x)dF(x) = max

dF∈C

∫
∞

0
P(x)dF(x). (S-2)

Proof. See Section S.3.

Corollary S.1. If a solution dF∗exists to the problem

max
dF∈C

∫
∞

0
O(x)dF(x), (S-3)

then we must have

i. dF∗(D(P)) = 0;

ii.
∫

∞

0 O(x)dF∗(x) =
∫

∞

0 P(x)dF∗(x);

iii. dF∗ also solves maxdF∈C
∫

∞

0 P(x)dF(x).

Proof. (i): If dF∗(D(P))> 0, then

max
dF∈C

∫
∞

0
O(x)dF(x) =

∫
∞

0
O(x)dF∗(x)<

∫
∞

0
P(x)dF∗(x)≤ max

dF∈C

∫
∞

0
P(x)dF(x),

contradicting Theorem S.1.
(ii) and (iii): (ii) follows immediately from (i). Given that dF∗ solves problem (S-3),

(iii) follows immediately from (ii) and Theorem S.1.
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S.2 Proof of uniqueness

In the following analysis, let N be the set of all the n contestants. For all i ∈N , let
Pi, which is defined by (S-1), be contestant i’s probability of winning function ignoring
rationing and Fi his distributional choice. By Corollary S.1, given the existence of
equilibria, to characterize the equilibrium distribution, we only need to examine the
best reply to P rather than to the actual probability of winning function. This problem
is expressed by (1) with P interpreted as the probability of winning ignoring rationing.
Given that this P is a CDF, the analysis developed in Section 2.1 still holds. Let Li be
contestant i’s upper support line, i.e., Li(x) = αi + βix for all x ≥ 0, where αi and βi

are nonnegative optimal dual variables for contestant i’s dual problem (4). Let Vi be
contestant i’s expected probability of winning in equilibrium. Based on the analysis in
Section 2.1 and S.1, we obtain the next result.

Lemma S.1. For all i ∈N , the following results hold:

i. Pi(x)≤ Li(x) for all x≥ 0,

ii. dFi {x≥ 0 : Pi(x)< Li(x)}= 0,

iii. and Vi = Li(µ).

Proof. (i) and (ii): Follow immediately from equation (8) and Corollary S.1.
(iii): Follows immediately from equation (7) and Corollary S.1.

Lemma S.2. For all i ∈N , βi > 0 and Li(x)> 0 for all x > 0.

Proof. Since all the contestants have the same capacity, it is obvious that i cannot guar-
antee strictly outperforming any of his competitors. Thus, i cannot guarantee win-
ning a prize. Then by Corollary S.1, i must not guarantee winning a prize even if
we ignore prize rationing in the case of ties. Thus, βi, which measures the marginal
value of capacity under Pi, must be strictly positive. This implies that, for all x > 0,
Li(x)> Li(0) = αi ≥ 0.

Lemma S.3. No one places point mass on (0,∞) and Pi is continuous on (0,∞) for all

i ∈N .

Proof. First, we show that no one places point mass on (0,∞) by way of contradiction.
Suppose otherwise; so there exists contestant i who places point mass on x′ > 0. Then
by Lemmas S.1 and S.2, we must have Pi(x′) = Li(x′) > 0, which implies that at least
(n−m) of i’s competitors each place weight on [0,x′]. Thus, given that i places point
mass on x′, for any j 6= i, at least (n−m) of j’s competitors each place weight on [0,x′].
Thus, Pj(x′)> 0 for all j 6= i. Moreover, given that Pj(x′)> 0, contestant i’s point mass
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on x′ further implies discontinuity of Pj at x′: Pj(x′) > Pj(x′−) for all j 6= i. Since, by
Lemma S.1, Pj ≤ L j, and since L j is continuous, we must have Pj(x′−) < L j(x′−) for
all j 6= i. Thus, given that L j is continuous and x′ > 0, there must exist ε > 0 such that
Pj(x′−) < L j(x) for all x ∈ [x′− ε,x′). Thus, given that Pj is nondecreasing, we must
have Pj(x) < L j(x) for all x ∈ [x′− ε,x′) and j 6= i. This implies, by Lemma S.1, that
none of i’s competitors places probability weight on [x′− ε,x′). Note also that none of
i’s competitors places point mass on x′. This is because if any of them placed point mass
on x′, Pi would have discontinuity at x′ and, hence, i’s point mass on x′ would contradict
Corollary S.1. Thus, none of i’s competitors places weight on [x′− ε,x′]. Hence, i can
relax his capacity constraint without losing any probability of winning by transferring
point mass from x′ to x′− ε . By Lemma S.2, capacity has strictly positive marginal
value. Thus, such a transfer makes i strictly better off, a contradiction.

Given that no one places point mass on (0,∞), Pi must be continuous on (0,∞) for
all i ∈N .

Lemma S.4. For any two distinct contestants i and j, if Fj(x) ≤ Fi(x) for all x ≥ x′,

where x′ > µ , there must exist xo ∈ [0,x′) such that L j(xo)≤ Li(xo).

Proof. Suppose not; so

L j(x)> Li(x) ∀x ∈ [0,x′), where x′ > µ. (S-4)

First, we claim that Fj(0) = 0 and, hence, Fj(0) ≤ Fi(0). We prove this by way of
contradiction. Suppose Fj(0) > 0, which, by Lemma S.1, implies that Pj(0) = L j(0).
By hypothesis (S-4), L j(0) > Li(0) ≥ 0. Thus, Pj(0) > 0. However, Pj(0) > 0 implies
discontinuity of Pj at x = 0: Pj(0)> Pj(0−). By Corollary S.1, this implies that j places
no mass on 0, which contradicts Fj(0)> 0. This contradiction establishes our claim.

Next, since Fi and Fj have the same mean, Fj must not first-order stochastically
dominate Fi. Thus, given that 0 = Fj(0) ≤ Fi(0) and Fj(x) ≤ Fi(x) for all x ≥ x′, it
must be that either (i) Fj(x) = Fi(x) for all x≥ 0 or (ii) there exists x̃ ∈ (0,x′) such that
Fj(x̃)> Fi(x̃).

If (i) occurs, we must have Vi =Vj and thus, by Lemma S.1, Li(µ) = L j(µ), which
contradicts hypothesis (S-4). Thus, (i) is impossible.

Now consider (ii). Given that Fi(x̃)≥ 0, Fj(x̃)> Fi(x̃) implies that Fj(x̃)> 0, which
further implies that contestant j places weight on [0, x̃]. Thus, by Lemma S.1 and the
continuity of Pj and L j on (0,∞), there must exist x̄ ∈ [0, x̃] such that

x̄ = max{x ∈ [0, x̃] : Pj(x) = L j(x)}. (S-5)
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Note that Fj(x̃)> Fi(x̃) implies
Pj(x̃)≤ Pi(x̃). (S-6)

By hypothesis (S-4) and x̃∈ (0,x′), we must have Li(x̃)<L j(x̃) and thus, by Lemma S.1,
Pi(x̃)≤ Li(x̃)< L j(x̃). Thus, by (S-6), we must have Pj(x̃)< L j(x̃). Thus, by (S-5), we
must have x̄ < x̃ and Pj(x) 6= L j(x) for all x ∈ (x̄, x̃]. Thus, by Lemma S.1, j places no
weight on (x̄, x̃]. However, given x̄ < x̃ < x′, by (S-5), (S-4), and Lemma S.1, Pj(x̄) =

L j(x̄)> Li(x̄)≥ Pi(x̄). This implies, given that j places no weight on (x̄, x̃], that Pj(x̃)>

Pi(x̃), which contradicts equation (S-6). This completes the proof.

In what follows, for all i ∈N , define Si by

Si = {x > 0 : Pi(x) = Li(x)}, (S-7)

define x̂i by
x̂i = maxSi, (S-8)

and define x̂ by
x̂ = max{x̂i}i∈N . (S-9)

Lemma S.5. For all i ∈N ,

i. Si 6= /0, where Si is defined by (S-7);
ii. x̂i, defined by (S-8), exists;

iii. x̂i = x̂ > µ , where x̂ is defined by (S-9);
iv. Pi(x̂) = Li(x̂) = 1.

Proof. (i): Clearly, in any equilibrium, contestants must all place some weight on the
strictly positive real line. This, by Lemma S.1, implies (i).

(ii): Lemma S.3, Pi is continuous on (0,∞). Thus, (ii) follows immediately from (i)
and the continuity of Li and Pi on (0,∞).

(iii): By Lemma S.3 and the fact that the mean of Fi equals µ , we must have
x̂i > µ for all i ∈ N . Without loss of generality, assume that contestant j has x̂ j =

max{x̂i}i∈N = x̂. Thus, by the definition of x̂ j, Pj(x̂) = L j(x̂). By the definition of x̂

and Lemma S.1, no one places weight above x̂. Thus,

Pj(x̂) = L j(x̂) = 1. (S-10)

We now prove (iii) by way of contradiction. Suppose, contrary to (iii), that there exists
contestant k 6= j such that x̂k ∈ (µ, x̂). This, by the definition of x̂k and the fact that
Lk ≥ Pk, implies that Lk(x̂) > Pk(x̂). Since no one places weight above x̂, Pk(x̂) = 1.
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Thus, Lk(x̂)> 1. This, by (S-10), implies that

Lk(x̂)> L j(x̂). (S-11)

By the definition of x̂k and Lemma S.1, Fk(x̂k) = 1. Thus, Fk(x̂k) ≥ Fj(x̂k), which
implies that Pk(x̂k)≤ Pj(x̂k). This further implies, by the facts that Pk(x̂k) = Lk(x̂k) and
Pj ≤ L j, that Lk(x̂k) ≤ L j(x̂k). This, together with (S-11) and the fact that both L j and
Lk are upward sloping straight lines, implies that

L j(x)> Lk(x) ∀x ∈ [0, x̂k). (S-12)

However, since Fj(x)≤ 1 = Fk(x) for all x≥ x̂k, where x̂k > µ , equation (S-12) contra-
dicts Lemma S.4. This contradiction completes the proof of (iii).

(iv): Follows immediately from (iii) and equation (S-10).

Lemma S.6. All the contestants have the same upper support line.

Proof. Consider any pair of distinct contestants i and j. By Lemma S.5, Li(x̂) = L j(x̂),
where x̂> µ . By the definition of x̂, Fi(x)=Fj(x)= 1 for all x≥ x̂. Thus, by Lemma S.4,
neither Li nor L j can lie above the other everywhere on [0, x̂). Since Li and L j are straight
lines which meet at x̂, they must completely overlap.

The next lemma is a supplementary statistical result. To avoid interrupting the flow
of the argument of equilibrium uniqueness, we put its proof in Section S.3.

Lemma S.7. For any two distinct contestants i and j,

i. if Pi(x)> Pj(x), it must be that Fi(x)< Fj(x);

ii. if Pi(x) = Pj(x) ∈ (0,1), it must be that Fi(x) = Fj(x);

iii. if Pi(x) ∈ (0,1) and Pi(x)≥ Pj(x), it must be that Fi(x)≤ Fj(x).

Proof. See Section S.3.

Lemma S.8. Si, defined by (S-7), is a connected set for all i ∈N .

Proof. Suppose not; so there exists contestant j such that S j is not connected. Lemma S.3
and the continuity of L j imply that (0, x̂]\S j is a combination of open intervals. Thus,
given that x̂ ∈S j, which is implied by Lemma S.5, if S j is not connected, there must
exist an open interval (a,b), where 0 < a < b≤ x̂, such that (a,b) 6⊂S j while a,b∈S j.
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By Lemma S.1, this implies

Pj(a) = L j(a) (S-13)

Pj(b) = L j(b) (S-14)

Pj(x)< L j(x) ∀x ∈ (a,b). (S-15)

For any contestant k 6= j, by Lemma S.1, Pk(a)≤ Lk(a), and, by Lemma S.6, L j =

Lk. Thus, equation (S-13) implies

Pk(a)≤ Pj(a). (S-16)

Given that a∈ (0, x̂), by equation (S-13) and Lemmas S.2 and S.5, 0 < Pj(a)< 1. Thus,
by (S-16), we must have Pk(a)≤ Pj(a) ∈ (0,1), which, by Lemma S.7, implies

Fk(a)≥ Fj(a). (S-17)

Since (a,b) 6⊂S j, by Lemma S.1, j places no weight on (a,b). Thus,

Fj(x) = Fj(a) ∀x ∈ (a,b). (S-18)

Since Fk is nondecreasing, equations (S-17) and (S-18) imply that Fk(x)≥ Fj(x) for all
x ∈ (a,b), which further implies that Pk(x) ≤ Pj(x) for all x ∈ (a,b). Thus, by equa-
tion (S-15) and Lemma S.6, we must have Pk(x) < Lk(x) for all x ∈ (a,b). Thus, by
Lemma S.1, k places no weight on (a,b). Thus, none of j’s competitor places any
weight on (a,b). This, together with Lemma S.3, implies that Pj(b) = Pj(a). Then, by
equations (S-13) and (S-14), we must have L j(b) = L j(a), which implies that β j = 0.
This contradicts Lemma S.2. This contradiction establishes the result.

Lemma S.9. Pi(x) = Li(x) for all i ∈N and x ∈ (0, x̂], where x̂ is defined by (S-9).

Proof. Lemma S.5 ensures the existence of xi, defined by

xi = infSi ∀ i ∈N , (S-19)

where Si is defined by (S-7). By Lemmas S.5 and S.8, to show Lemma S.9, it suffices
to show that

xi = 0 ∀ i ∈N . (S-20)
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To establish (S-20), we first show that

xi = x ∀ i ∈N , where x = min{xi}i∈N ≥ 0. (S-21)

We establish (S-21) by way of contradiction. Without loss of generality, suppose that
contestant k has xk = min{xi}i∈N and contestant j 6= k has x j = max{xi}i∈N . If (S-21)
does not hold, we must have

0≤ xk < x j.

By (S-19), Lemmas S.5 and S.8, the definition of x j, and the continuity of Pi at
x j > 0 for all i ∈N , which is implied by Lemma S.3, we must have Pi(x) = Li(x) for
all x ∈ [x j, x̂] and i∈N . Hence, by Lemmas S.2 and S.5, Pi(x)∈ (0,1) for all x ∈ [x j, x̂)

and i ∈N . Thus, by Lemma S.6, Pj(x) = Pk(x) ∈ (0,1) for all x ∈ [x j, x̂), which, by
Lemma S.7, implies

Fj(x) = Fk(x) ∀x ∈ [x j, x̂). (S-22)

By Lemma S.1, Pj ≤ L j. Thus, by the definition of x j,

Pj(x)< L j(x) ∀x ∈ (0,x j). (S-23)

By equation (S-23) and Lemmas S.1 and S.3, j places no weight on (0,x j]. Thus, Fj(x)

is constant on [0,x j]. Thus, given that Fk is nondecreasing, by (S-22), we must have

Fj(x)≥ Fk(x) ∀x ∈ [0, x̂). (S-24)

Given that xk < x j, by Lemmas S.5 and S.8 and the definition of xk, we must have
Pk(x) = Lk(x) for all x ∈ (xk, x̂]. This implies, by Lemma S.6 and equation (S-23), that
Pk(x)> Pj(x) for all x ∈ (xk,x j). This further implies, given that the rule for allocating
prizes is symmetric, that Fj and Fk cannot be the same distribution. Thus, by equa-
tion (S-24) and the fact that Fj(x̂) = Fk(x̂) = 1, Fk first-order stochastically dominates
Fj, which contradicts that Fk and Fj have the same mean, and (S-21) follows.

Given (S-21), to show (S-20), all we need to show is x = 0. We show this by
way of contradiction. Suppose x > 0. Then by the definition of xi and the fact that
both Pi and Li are continuous on (0,∞), we must have Pi(x) = Li(x) for all i ∈ N .
Thus, by Lemma S.2, Pi(x) > 0 for all i ∈N . This implies, given the fact that no one
places weight on (0, x), that Pi(0) > 0 for all i ∈N . Thus, Pi is discontinuous at 0:
Pi(0) > Pi(0−). This implies, by Corollary S.1, that no one places weight on 0. Thus,
Pi(0) = 0, which contradicts Pi(0) > 0. This contradiction establishes equation (S-20)
and completes the proof.
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Lemma S.10. There are no asymmetric equilibria.

Proof. For any pair of distinct contestants i and j, Lemmas S.2, S.6, and S.9 imply
that Pi(x) = Pj(x) ∈ (0,1) for all x ∈ (0, x̂). Thus, by Lemma S.7, Fi(x) = Fj(x) for all
x ∈ (0, x̂). Thus, by the definition of x̂ and the right-continuity of CDF functions, for all
x≥ 0, Fi(x) = Fj(x), and the result follows.

S.3 Proofs of Theorem S.1 and Lemma S.7

Proof of Theorem S.1: First note that, since O≤ P,

sup
dF∈C

∫
∞

0
O(x)dF(x)≤ sup

dF∈C

∫
∞

0
P(x)dF(x). (S-25)

To establish the reverse inequality, we require the following lemma.

Lemma S.11. For every ε > 0 and measure dF ∈ C , there exists a measure dF̄ ∈ C

such that ∫
∞

0
P(x)dF̄(x)≥ µ

µ + ε

∫
∞

0
P(x)dF(x) and dF̄(D(P)) = 0.

Proof. Let D(dF) be the set of points on which dF places point weight. Note first
that we can decompose dF into two measures: a measure dFo that lives outside of
D(P)∩D(dF) and a discrete measure dFD that lives on D(P)∩D(dF), i.e.,

dF = dFo +dFD and dFD({x}) =

dF({x}) if x ∈ D(P)∩D(dF)

0 otherwise

Thus, ∫
∞

0
P(x)dF(x) =

∫
∞

0
P(x)dFo(x)+

∫
∞

0
P(x)dFD(x). (S-26)

Now for each xi ∈D(P)∩D(dF)∩ [0,∞), select x̄i ∈ (xi,xi+ε]\D(P). Given that D(P)
is a countable set, x̄i exists and x̄i > 0. Define, for each xi ∈ D(P)∩D(dF)∩ [0,∞), the
measure

dF̄i({x}) =


µ

µ+ε
dFD({xi}) if x = x̄i

0 otherwise
.

Note that, since x̄i > xi and P is nondecreasing, for each xi ∈ D(P)∩D(dF)∩ [0,∞),∫
∞

0
P(x)dF̄i(x)≥

µ

µ + ε
P(xi)dFD({xi}). (S-27)
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Now define the measure
dF̄ =

µ

µ + ε
dFo +∑

i
dF̄i. (S-28)

Equations (S-26), (S-27), and (S-28) imply that∫
∞

0
P(x)dF̄(x)≥ µ

µ + ε

∫
∞

0
P(x)dF(x).

By construction, dF̄ places no weight on the countable set D(P). By construction, it is
clear that

∫
∞

0 dF̄(x)≤
∫

∞

0 dF(x). Moreover, given the facts that x̄i ≤ xi+ε ,
∫

∞

0 xdF(x)≤
µ , and

∫
∞

0 dF(x)≤ 1, by construction, we must have∫
∞

0
xdF̄(x) ≤ µ

µ + ε

∫
∞

0
xdFo(x)+

µ

µ + ε

∫
∞

0
(x+ ε)dFD(x)

≤ µ

µ + ε

∫
∞

0
(x+ ε)dF(x)

≤ µ.

Thus, dF̄ ∈ C . Hence, dF̄ satisfies the hypothesis of the lemma.

Using Lemma S.11 we next show that

sup
dF∈C

∫
∞

0
O(x)dF(x)≥ sup

dF∈C

∫
∞

0
P(x)dF(x). (S-29)

To establish (S-29), let (dFn)n be a sequence of measures in C such that∫
∞

0
P(x)dFn(x)→ sup

dF∈C

∫
∞

0
P(x)dF(x).

By Lemma S.11, there exists a sequence of measures (dF̄n)n in C such that∫
∞

0
P(x)dF̄n(x)≥

µ

µ + 1
n

∫
∞

0
P(x)dFn(x) and dF̄n(D(P)) = 0.

Thus, ∫
∞

0
P(x)dF̄n(x)→ sup

dF∈C

∫
∞

0
P(x)dF(x). (S-30)

Since dF̄n(D(P)) = 0,∫
∞

0
P(x)dF̄n(x) =

∫
∞

0
O(x)dF̄n(x)≤ sup

dF∈C

∫
∞

0
O(x)dF(x). (S-31)

Thus, (S-29) follows from equations (S-30) and (S-31).
Finally, the upper semi-continuity and boundedness of P imply that the map dF 7→
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∫
∞

0 PdF is upper semi-continuous. Thus, a solution dF∗ exists to the problem

max
dF∈C

∫
∞

0
P(x)dF(x).

Thus, Theorem S.1 follows from (S-25) and (S-29).

Proof of Lemma S.7: We first develop a statistical result that will be used to prove
Lemma S.7.

Lemma S.12. Consider a set of distribution functions, {F1,F2, · · · ,Fn}. Let Fm:n be the

distribution function for the mth highest realization of the random variables associated

with these distribution functions, i.e., F1:n is the distribution of the highest realization

and Fn:n is the distribution of the lowest. Define Fm:n = 0 if m≤ 0 and Fm:n = 1 if m≥ n.

The following statement must be true: if Fm:n(x) = Fm−1:n(x), it must be that either

Fm:n(x) = Fm−1:n(x) = 1 or Fm:n(x) = Fm−1:n(x) = 0.

Proof. We prove by an induction argument. Let S(n) be the general statement in the
lemma. First, we show that S(2) is true. To see this, given the facts that F0:2(x) = 0,
F1:2(x) = F1(x)F2(x), F2:2(x) = 1− (1−F1(x))(1−F2(x)), and F3:2(x) = 1, simply do
the calculations:

(i) 0 = F3:2(x)−F2:2(x) = 1−F2:2(x)

(ii) 0 = F2:2(x)−F1:2(x) = F1(x)(1−F2(x))+F2(x)(1−F1(x))

(iii) 0 = F1:2(x)−F0:2(x) = F1:2(x)−0.

It is evident that S(2) is satisfied in cases (i) and (iii). For case (ii), since the value of a
distribution function is bounded by 0 and 1, it is clear that F2:2(x)−F1:2(x) = 0 either
(a) when F1(x) = F2(x) = 0, in which case F1:2(x) = 0 or (b) when F1(x) = F2(x) = 1,
in which case F1:2(x) = 1. Thus, S(2) holds in all the cases.

Assume, for the purpose of induction, that S(n−1) is true. We prove the lemma by
showing that this implies S(n). Note that, for any distribution function j among the n

distribution functions,

Fm:n(x) = Fj(x)
(

F− j
m:n−1(x)−F− j

m−1:n−1(x)
)
+F− j

m−1:n−1(x) (S-32)

Fm−1:n(x) = Fj(x)
(

F− j
m−1:n−1(x)−F− j

m−2:n−1(x)
)
+F− j

m−2:n−1(x), (S-33)
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in which the superscript − j denotes the extraction of j from the set. Subtracting (S-33)
from (S-32) yields

Fm:n(x)−Fm−1:n(x) =Fj(x)
(

F− j
m:n−1(x)−F− j

m−1:n−1(x)
)

+(1−Fj(x))
(

F− j
m−1:n−1(x)−F− j

m−2:n−1(x)
)
. (S-34)

Suppose that, for some j, Fj(x)∈ (0,1) (otherwise S(n) must hold). Since F− j
m:n−1(x)−

F− j
m−1:n−1(x) and F− j

m−1:n−1(x)−F− j
m−2:n−1(x) are nonnegative and Fj(x)∈ (0,1), by (S-34),

if Fm:n(x)−Fm−1:n(x) = 0, then

F− j
m:n−1(x)−F− j

m−1:n−1(x) = F− j
m−1:n−1(x)−F− j

m−2:n−1(x) = 0. (S-35)

Then S(n−1) implies that

either F− j
m−1:n−1(x) =F− j

m−2:n−1(x) = 0 or F− j
m−1:n−1(x) =F− j

m−2:n−1(x) = 1. (S-36)

Applying the conditions, (S-35) and (S-36), to equations (S-32) and (S-33) shows that

either Fm−1:n(x) = Fm:n(x) = 0 or Fm−1:n(x) = Fm:n(x) = 1,

and the result is established.

For any two distinct contestants i and j, we must have

Pi(x) = Fj(x)F
−i j
m:n−2(x)+(1−Fj(x))F

−i j
m−1:n−2(x) (S-37)

Pj(x) = Fi(x)F
−i j
m:n−2(x)+(1−Fi(x))F

−i j
m−1:n−2(x), (S-38)

where F−i j
m:n−2 is the probability of being at least the mth highest of the remaining con-

testants (with i and j extracted from the set) and F−i j
m−1:n−2 is the probability of being at

least the (m−1)th highest of the remaining contestants. Define F−i j
m:n−2 = 1 if m≥ n−2,

F−i j
m−1:n−2 = 1 if m−1 = n−2, and F−i j

m−1:n−2 = 0 if m−1 = 0. Equation (S-37) means
that, ignoring prize rationing in the case of ties, for i to be one of the m top performing
contestants, i must either weakly beat j and be one of the top m when competing against
the rest or lose to j and be one of the top (m−1) when competing against the rest. The
meaning of equation (S-38) is similar.

Subtracting (S-37) from (S-38) yields

Pj(x)−Pi(x) = (Fi(x)−Fj(x))
(

F−i j
m:n−2(x)−F−i j

m−1:n−2(x)
)
. (S-39)
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Since F−i j
m:n−2(x)−F−i j

m−1:n−2(x)≥ 0, it is clear, by equation (S-39), that if Pi(x)> Pj(x),
we must have Fi(x)< Fj(x). This establishes (i) in Lemma S.7.

Next, we show (ii) by way of contradiction. Suppose Pj(x) = Pi(x) ∈ (0,1) and
suppose, contrary to (ii), that Fi(x)−Fj(x) 6= 0. Then by equation (S-39), we must have
F−i j

m:n−2(x)−F−i j
m−1:n−2(x) = 0. However, by Lemma S.12, F−i j

m:n−2(x)−F−i j
m−1:n−2(x) = 0

implies that either F−i j
m:n−2(x) = F−i j

m−1:n−2(x) = 1 or F−i j
m:n−2(x) = F−i j

m−1:n−2(x) = 0. This,
by equation (S-38), further implies that Pj(x) must equal either 0 or 1. This contradicts
that Pj(x) ∈ (0,1). The contradiction establishes (ii) in Lemma S.7.

Finally, (iii) follows immediately from (i) and (ii).
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